Subject Code: YC CHEMISTRY 2

Subject: CHEMISTRY

Answer to this Paper must be written on the paper provided separately.

You will not be allowed to write during first 15 minutes.

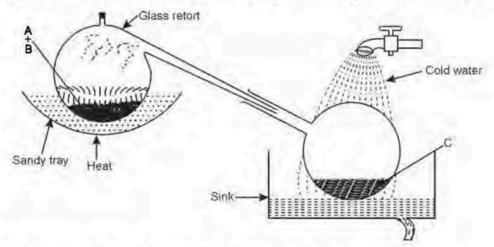
This time is to be spent in reading the question paper.

The time given at the head of this Paper is the time allowed for writing the answers.

Section A is compulsory. Attempt any four questions from Section B.

The intended marks for questions or parts of questions are given in brackets [].

SECTION A (40 MARKS)


(Attempt all questions from this Section)

Chestron 1 : Cuons due co.	theer sustains to the doesn't	us trom ree Staan abrome	. [13]
(i) A particular solution co	ntains molecules and ions o	f the solute so it is a:	
(a) weak acid	(b) strong acid	(c) strong base	(d) salt solution,
(ii) A compound which libe	erates reddish brown gas aro	und the anode during electro	olysis in its molten state is:
(a) Sodium chloride	(b) Copper (II) oxide	(c) Copper (II) sulphate	(d) Lead(II) bromide
	undergoes addition reactions organic compound could be	[4] 이 이 이 아름다면 그 나를 하는데 있다면 생각이 되었다면 살아 있다면 살아 있다는데 살아야 하는데 없다.	ipitate with ammoniacal cuprous
(a) Ethane	(b) Rithene	(c) Ethyne	(d) Ethanol
(iv) An organic weak acid i	s:		
(a) Formic acid	(b) Sulphuric acid	(c) Nitric acid	(d) Hydrochloric acid
(v) During ionization metal	s lose electrons, this change	can be called :	
(a) Oxidation	(b) Reduction	(c) Redox	(d) Displacement
(vi) Which one of the follow	wing is not true of metals :	970719 (Managan 1961)	C PRESENT OF STATE SHIPS CHAPTER THE STATE OF ST
(a) Metals are good or	onductors of electricity		
(b) Metals are malleab	le and ductile.		
(c) Metals from non-p	clar covalent compounds.		
(d) Metal will have 1	or 2 or 3 electrons in their	valence shell	
(vii) An example of a compl	lex salt is :		
(a) Zinc sulphate		(b) Sodium hydrogensulp	phate
(c) Iron (II) ammonium	n sulphsie	(d) Tetrammine copper (II) sulphate.
(viii) Aqua regia is a mixture	of;		
(a) Dilute hydrochloric	acid and concentrated nitri	e acid.	
(b) Concentrated hydro	chloric acid and dilute nitri	c acid.	
(c) Concentrated hydro	ochloric scid [1 part] and co	ncentrated nitric acid [3 part	35]
(d) Concentrated hade	chloric acid (3 parts) and o	ancentrated nitric sold F1 nor	+1

- (ix) The organic compound mixed with ethanol to make it spurious is : (b) Methanoic acid (d) Ethanoic acid (a) Methanol (c) Methanal (x) The number of electrons present in the valence shell of a halogen is : (a) 1 (b) 3 (c) 5 (d) 7 (xi) An element in period-3 whose electron affinity is zero (a) Neon (b) Sulphur (c) Sodium (d) Argon (xii) An alkaline earth metal (a) Potassium (b) Calcium (c) Lead (d) Copper (xiii) The vapour density of carbon dioxide [C = 12, O = 16](a) 32 (b) 16 (c) 44 (d) 22 (xiv) Identify the weak electrolyte from the following: (a) Sodium Chloride solution (b) Dilute Hydrochloric acid (c) Dilute Sulphuric acid (d) Aqueous acetic acid (xv) Which of the following metallic oxides cannot be reduced by normal reducing agents? (d) Iron(III) oxide
 - - (a) Magnesium oxide (b) Copper(II) oxide (c) Zinc oxide

Question 2

(i) The figure given below illustrates the apparatus used in the laboratory preparation of nitric acid. [5]

- (a) Name A (a liquid), B (a solid) and C (a liquid). (Do not give the formulae)
- (b) Write an equation to show how nitric acid undergoes decomposition.
- (c) Write the equation for the reaction in which copper is oxidised by concentrated nitric acid.
- (ii) Match the following Column A with Column B:

Column A	Column B		
(a) Acid salt	1. Ferrous ammonium sulphate		
(b) Double salt	2. Contains only ions		
(c) Ammonium hydroxide solution	3. Sodium hydrogen sulphate		
(d) Dilute hydrochloric acid	4. Contains only molecules		
(e) Carbon tetrachloride	5. Contains ions and molecules		

[5]

(iii) Complete the following by choosing the correct answers from the bracket : [5] (a) The catalyst commonly used for conversion of ethene to ethane is (nickel/iron/cobalt)

(b) When acetaldehyde is oxidised with acidified potassium dichromate, it forms (estern	
acetic acid)	/ethanol/
(c) The basicity of acetic acid is (3, 1, 4)	
(d) Substitution reactions are characteristic reactions of (alkynes/alkenes/alkanes).	
(e) The product formed when ethene gas reacts with water in the presence of sulphuric acid is	
(iv) Identify the following:	[5]
(a) The energy released when an electron is added to a neutral gaseous isolated atom to form a negatively ion.	
(b) Process of formation of ions from molecules which are not in ionic state.	
(c) The most common ore of iron.	
(d) The property by which certain hydrated salts, when left exposed to atmosphere, lose their very crystallization and crumble into powder.	water of
(e) The tendency of an atom to attract electrons to itself when combined in a compound.	
(v) (a) Give the IUPAC name for each of the following:	[5]
н н н	
1. H—C=O 2. H—C—C—C—C—OH 3. H ₃ C—C—C—CH ₃ H H H H H H H H H H H H H	
H H H H	
(b) Write the structural formula of the two isomers of butane.	
SECTION B	
(Attempt any four questions)	
Question 3	421
(i) Write a balanced chemical equation for the preparation of each of the following salts:	[2]
그림에는 그래면 없었다. 아이들이 하면 아이들이 되면 가루하는데 하는데 하는데 하면 회사를 하나면 아이들이 그리고 하는데 하는데 하는데 아이들이 되었다.	[2]
(a) Copper carbonate	[2]
(a) Copper carbonate (b) Ammonium sulphate crystals	
(a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation.	[2]
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → 	
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → 	[2]
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: 	
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) 	[2]
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²⁺, Cu²⁺, Na⁺, H⁺ (In the order of preferential discharge at the cathode) 	[2]
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²⁺, Cu²⁺, Na⁺, H⁺ (In the order of preferential discharge at the cathode) (c) Li, K, Na, H (In the decreasing order of their ionization potential) 	[2]
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄> (b) Cu + dil. HNO₃> (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²⁺, Cu²⁺, Na⁺, H⁺ (In the order of preferential discharge at the cathode) 	[2] [3]
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²⁺, Cu²⁺, Na⁺, H⁺ (In the order of preferential discharge at the cathode) (c) Li, K, Na, H (In the decreasing order of their ionization potential) (iv) Complete the following by selecting the correct option from the choices given: (a) pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentrations. (greater, same, low) (b) The indicator which does not change colour on passage of HCl gas is (methyl orange, methyl phenolphthalein) 	[2] [3] ion of H ⁺ noist blue
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²⁺, Cu²⁺, Na⁺, H⁺ (In the order of preferential discharge at the cathode) (c) Li, K, Na, H (In the decreasing order of their ionization potential) (iv) Complete the following by selecting the correct option from the choices given: (a) pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentrations. (greater, same, low) (b) The indicator which does not change colour on passage of HCl gas is (methyl orange, methods) 	[2] [3] ion of H ⁺ noist blue
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²⁺, Cu²⁺, Na⁺, H⁺ (In the order of preferential discharge at the cathode) (c) Li, K, Na, H (In the decreasing order of their ionization potential) (iv) Complete the following by selecting the correct option from the choices given: (a) pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentrations. (greater, same, low) (b) The indicator which does not change colour on passage of HCl gas is (methyl orange, malitmus, phenolphthalein) (c) The acid which cannot act as an oxidizing agent is (conc. H₂SO₄, conc. HNO₃, conc. In the concentration of the concentration is 	[2] [3] ion of H ⁺ noist blue
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²+, Cu²+, Na+, H+ (In the order of preferential discharge at the cathode) (c) Li, K, Na, H (In the decreasing order of their ionization potential) (iv) Complete the following by selecting the correct option from the choices given: (a) pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentrations. (greater, same, low) (b) The indicator which does not change colour on passage of HCl gas is (methyl orange, methyl phenolphthalein) (c) The acid which cannot act as an oxidizing agent is (conc. H₂SO₄, conc. HNO₃, conc. In Question 4 	[2] [3] ion of H ⁺ noist blue
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²+, Cu²+, Na+, H+ (In the order of preferential discharge at the cathode) (c) Li, K, Na, H (In the decreasing order of their ionization potential) (iv) Complete the following by selecting the correct option from the choices given: (a) pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentrations. (greater, same, low) (b) The indicator which does not change colour on passage of HCl gas is (methyl orange, methods) (c) The acid which cannot act as an oxidizing agent is (conc. H₂SO₄, conc. HNO₃, conc. In Question 4 (i) Give the chemical formula of: 	[2] [3] ion of H ⁺ noist blue
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²⁺, Cu²⁺, Na⁺, H⁺ (In the order of preferential discharge at the cathode) (c) Li, K, Na, H (In the decreasing order of their ionization potential) (iv) Complete the following by selecting the correct option from the choices given: (a) pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentrations. (greater, same, low) (b) The indicator which does not change colour on passage of HCl gas is (methyl orange, mitmus, phenolphthalcin) (c) The acid which cannot act as an oxidizing agent is (conc. H₂SO₄, conc. HNO₃, conc. In Question 4 (i) Give the chemical formula of: (a) Bauxite (b) Cryolite (ii) The solutions P, Q and R have pH value of 3.5, 5.2 and 12.2 respectively. Which one of these is a : 	[2] [3] ion of H ⁺ noist blue HCl)
 (a) Copper carbonate (b) Ammonium sulphate crystals (ii) Write the products and balance the equation. (a) C + conc. H₂SO₄ → (b) Cu + dil. HNO₃ → (iii) Arrange the following according to the instructions given in brackets: (a) K, Pb, Ca, Zn. (In the increasing order of the reactivity) (b) Mg²+, Cu²+, Na+, H+ (In the order of preferential discharge at the cathode) (c) Li, K, Na, H (In the decreasing order of their ionization potential) (iv) Complete the following by selecting the correct option from the choices given: (a) pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentrations. (greater, same, low) (b) The indicator which does not change colour on passage of HCl gas is (methyl orange, mitmus, phenolphthalein) (c) The acid which cannot act as an oxidizing agent is (conc. H₂SO₄, conc. HNO₃, conc. I Question 4 (i) Give the chemical formula of: (a) Bauxite (b) Cryolite 	[2] [3] ion of H ⁺ noist blue

(b) Soda lime is preferred to sodium hydroxide in the laboratory preparation of methane. (c) Hydrated copper sulphate crystals turn white on heating. (iv) Hydrogen chloride gas is prepared in the laboratory using concentrated sulphuric acid and sodium chloride. Answer the questions that follow based on this reaction: [3] (a) Give the balanced chemical equation for the reaction with suitable condition(s) if any. (b) Why is concentrated sulphuric acid used instead of concentrated nitric acid? (c) How is the gas collected? (b) Conc. sulphuric acid is used since it is non-volatile and has a high boiling point. So it displaces the volatile hydrogen chloride from the salt sodium chloride. (c) Dry hydrogen chloride gas is collected by the upward displacement of air in dry gas cylinder. **Question 5** (i) (a) Name a drying agent for ammonia. [2] (b) Name a nitrate of a metal which on heating does not give nitrogen dioxide. (ii) For the electro-refining of copper: [2] (a) What is the cathode made up of? (b) Write the reaction that takes place at the anode. (iii) Write a balanced chemical equation for each of the following : [3] (a) Reaction of sodium hydroxide solution with iron (III) chloride solution. (b) Action of heat on aluminium hydroxide. (c) Reaction of zinc with potassium hydroxide solution. (iv) State one relevant observation for each of the following: [3] (a) Lead nitrate solution is treated with sodium hydroxide solution dropwise till it is in excess. (b) Lead nitrate solution is mixed with dilute hydrochloric acid and heated. (c) Anhydrous calcium chloride is exposed to air for some time. (i) Give one word/words for the following statements: [2] (a) The molecular weight of an element expressed in grams. (b) A formula of a chemical substance which tells the actual number of atoms in one molecule of a substance. (ii) Given: $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$ [2]

Question 6

(A) Dehydrating agent

2000 cc of O2 was burnt with 400 cc of ethane.

Calculate the volume of CO₂ formed and unused O₂.

(iii) Study the flow chart given and give balanced equations to represent the reactions A, B and C: [3]

$$Mg_3N_2$$
 \xrightarrow{A} NH_3 \xrightarrow{B} NH_4Cl

(iv) Some properties of sulphuric acid are listed below. Choose the role played by sulphuric acid as A, B or C which is responsible for the reactions (a) to (c). [3]

(C) Oxidising agent

- (a) $CuSO_4.5H_2O \xrightarrow{conc. H_2SO_4} CuSO_4 + 5H_2O$
- (b) $S + 2H_2SO_4$ (conc.) $\rightarrow 3SO_2 + 2H_2O$
- (c) NaCl + H₂SO₄ (conc.) $\xrightarrow{<200^{\circ}C}$ NaHSO₄ + HCl

(B) Non-volatile acid

Question 7

(i) A gaseous hydrocarbon of vapour density 29, contains 82.76% of carbon. Calculate its empirical formula and molecular formula. [C = 12, H = 1][2]

- (ii) Write equations for : [2]
 - (a) Preparation of ethanol by hydration of C2H4.
 - (b) Preparation of acetic acid from ethanol.
- (iii) Write equations for the reactions taking place at the two electrodes (mentioning clearly the name of the electrode) during the electrolysis of:
 - (a) Acidified copper sulphate solution with copper electrodes.
 - (b) Molten lead bromide with inert electrodes.
- (iv) A gas cylinder can hold 1 kg of hydrogen at room temperature and pressure: [3]
 - (a) Find the number of moles of hydrogen present.
 - (b) What weight of CO_2 can the cylinder hold under similar conditions of temperature and pressure? (H = 1, C = 12, O = 16)
 - (c) If the number of molecules of hydrogen in the cylinder is X, calculate the number of CO₂ molecules in the cylinder under the same conditions of temperature and pressure.
 - (d) State the law that helped you to arrive at the above result.

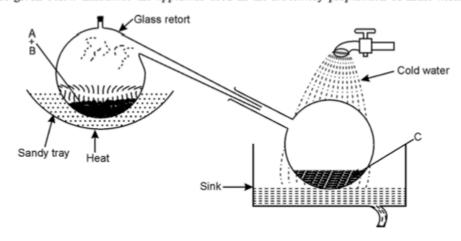
Question 8

- (i) Draw the electron dot diagram for the compounds given below. Represent the electrons by (.) and (x) in the diagram. [Atomic No.: O = 8, Cl = 17, H = 1]
 - (a) Chlorine molecule
- (b) Water molecule
- (ii) Distinguish between the following pairs of compounds using the reagent given in the bracket.
- [2]
- (a) Ferrous sulphate solution and ferric sulphate solution. (using sodium hydroxide solution)
- (b) Dilute hydrochloric acid and dilute sulphuric acid. (using lead nitrate solution)
- (iii) State the observations at the anode and at the cathode during the electrolysis of : [3]
 - (a) fused lead bromide using graphite electrodes.
 - (b) copper sulphate solution using copper electrodes.
- (iv) Study the extract of the Periodic Table given below and answer the questions that follow. Give the alphabet corresponding to the element in question. DO NOT repeat an element.

7						_	_	_	_
					C	D	E		1
	В				-			G	1

- (a) Which element forms electrovalent compound with G?
- (b) The ion of which element will migrate towards the cathode during electrolysis?
- (c) Which non-metallic element has the valency of 2?

Subject Code: YC CHEMISTRY 2



Subject: CHEMISTRY

				ANS	WERS		
(i) (d)	(ii) (d)	(iii) (c)	(iv) (a)	(v) (a)	(vi) (c)	(vii) (d)	(viii) (d)
(ix) (a)	(x) (d)	(xi) (d)	(xii) (b)	(xiii) (d)	(xiv) (d)	(xv) (a)	

Question 2

(i) The figure given below illustrates the apparatus used in the laboratory preparation of nitric acid. [5]

- (a) Name A (a liquid), B (a solid) and C (a liquid). (Do not give the formulae)
- (b) Write an equation to show how nitric acid undergoes decomposition.
- (c) Write the equation for the reaction in which copper is oxidised by concentrated nitric acid.
- Ans. (a) Liquid A is concentrated sulphuric acid. Solid B is potassium nitrate.

Liquid C is concentrated nitric acid

- (b) $4HNO_3(l) \xrightarrow{\text{heat}} 2H_2O(l) + 4NO_2(g) + O_2(g)$
- (c) $Cu(s) + 4HNO_3(conc.) \longrightarrow Cu(NO_3)_2(aq) + 2H_2O(l) + 2NO_2(g)$
- (ii) Match the following Column A with Column B:

Column A	Column B		
(a) Acid salt	1. Ferrous ammonium sulphate		
(b) Double salt	2. Contains only ions		
(c) Ammonium hydroxide solution	3. Sodium hydrogen sulphate		
(d) Dilute hydrochloric acid	4. Contains only molecules		
(e) Carbon tetrachloride	5. Contains ions and molecules		

Ans. (a) Acid salt - Sodium hydrogen sulphate (3)

- (b) Double salt— Ferrous ammonium sulphate (1)
- (c) Ammonium hydroxide solution— Contains ions and molecules (5)
- (d) Dilute hydrochloric acid— Contains only ions (2)
- (e) Carbon tetrachloride Contains only molecules (4)

www.yashwantclasses.in

(iii) Complete the following by choosing the correct answers from the bracket : _____ (nickel/iron/cobalt) (a) The catalyst commonly used for conversion of ethene to ethane is (b) When acetaldehyde is oxidised with acidified potassium dichromate, it forms _____ (ester/ethanol/ acetic acid) (c) The basicity of acetic acid is _____. (3, 1, 4) (d) Substitution reactions are characteristic reactions of _____ (alkynes/alkenes/alkanes). (e) The product formed when ethene gas reacts with water in the presence of sulphuric acid is (Ethanol/ethanal/ethanoic acid) Ans. (a) Nickel (b) Acetic Acid (c) 1 (d) Alkanes (e) Ethanol. (iv) Identify the following: [5] (a) The energy released when an electron is added to a neutral gaseous isolated atom to form a negatively charged (b) Process of formation of ions from molecules which are not in ionic state. (c) The most common ore of iron. (d) The property by which certain hydrated salts, when left exposed to atmosphere, lose their water of crystallization and crumble into powder. (e) The tendency of an atom to attract electrons to itself when combined in a compound. Ans. (a) Electron affinity (b) Ionisation (c) Haematite (e) Electronegativity (d) Efflorescent (v) (a) Give the IUPAC name for each of the following: [5] 1. H-C=0 2. H-C=0 2. H-C=0 3. $H_3C-C=0$ 3. $H_3C-C=0$ (b) Write the structural formula of the two isomers of butane. (a) 1. Methanal 2. Propanol 3. 2-Butene Ans. Normal butane Iso-butane SECTION B (Attempt any four questions) **Ouestion 3** [2] (i) Write a balanced chemical equation for the preparation of each of the following salts: (a) Copper carbonate (b) Ammonium sulphate crystals **Ans.** (a) $CuSO_4(aq) + Na_2CO_3(aq) \longrightarrow Na_2SO_4(aq) + CuCO_3(s)$ (b) $2NH_4OH(aq) + H_2SO_4(aq) \longrightarrow (NH_4)_2SO_4(aq.) + 2H_2O$ (ii) Write the products and balance the equation. [2] (a) C + conc. $H_2SO_4 \longrightarrow$ (b) Cu + dil. $HNO_3 \longrightarrow$ Ans. (a) $C + 2H_2SO_4$ (conc.) $\longrightarrow 2H_2O + 2SO_2 + CO_2$ (b) $3Cu + 8HNO_3$ (dil.) $\longrightarrow 3Cu$ (NO_3)₂ + $4H_2O + 2NO(g)$

(iii)	Arrange the following according to the instructions given in brackets:	[3]
	(a) K, Pb, Ca, Zn. (In the increasing order of the reactivity)	
	(b) Mg ²⁺ , Cu ²⁺ , Na ⁺ , H ⁺ (In the order of preferential discharge at the cathode)	
	(c) Li, K, Na, H (In the decreasing order of their ionization potential)	
Ans.	(a) $Pb < Zn < Ca < K$ (b) $Cu^{2+} > H^+ > Mg^{2+} > Na^+$ (c) $H > Li > Na > K$	
(iv) Complete the following by selecting the correct option from the choices given :	[3]
	(a) pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentration of ions. (greater, same, low)	of H ⁺
	(b) The indicator which does not change colour on passage of HCl gas is (methyl orange, moist	blue
	litmus, phenolphthalein)	
	(c) The acid which cannot act as an oxidizing agent is (conc. H ₂ SO ₄ , conc. HNO ₃ , conc. HCl)	
Ans	a. (a) Low (b) Phenolphthalein (c) Conc. HCl	
Que	estion 4	
(i) Give the chemical formula of :	[2]
	(a) Bauxite (b) Cryolite	
Ans	s. (a) $Al_2O_3.2H_2O$ (b) Na_3AlF_6	
(ii)) The solutions P, Q and R have pH value of 3.5, 5.2 and 12.2 respectively. Which one of these is a :	[2]
	(a) Weak acid? (b) Strong alkali?	
Ans	s. (a) Weak acid is Q (5.2).	
	(b) Strong alkali is R (12.2).	
(iii)) Explain the following :	[3]
	(a) Graphite anode is preferred to platinum in the electrolysis of molten lead bromide.	
	(b) Soda lime is preferred to sodium hydroxide in the laboratory preparation of methane.	
	(c) Hydrated copper sulphate crystals turn white on heating.	
Ans	(a) Graphite anode is used in preference to platinum because bromine evolved at the anode reacts with plat	inum
	but not with graphite. (b) Sadalima is preferred to addium hydroxide because it is not delignescent and does not attack along	
	(b) Sodalime is preferred to sodium hydroxide because it is not deliquescent and does not attack glass.(c) On heating the blue coloured hydrated copper sulphate crystals start crumbling to form white powd	er of
	anhydrous copper sulphate after losing its water of crystallisation.	01 01
(iv) Hydrogen chloride gas is prepared in the laboratory using concentrated sulphuric acid and sodium chloride. An	swer
	the questions that follow based on this reaction:	[3]
	(a) Give the balanced chemical equation for the reaction with suitable condition(s) if any.	
	(b) Why is concentrated sulphuric acid used instead of concentrated nitric acid?	
	(c) How is the gas collected?	
Ans	(a) NaCl(s) + H_2SO_4 (conc.) $\xrightarrow{< 200^{\circ}C}$ NaHSO ₄ (aq) + HCl (g)	
		volotil
	(b) Conc. sulphuric acid is used since it is non-volatile and has a high boiling point. So it displaces the hydrogen chloride from the salt sodium chloride.	voiatil
	(c) Dry hydrogen chloride gas is collected by the upward displacement of air in dry gas cylinder.	
	(v) 21) a jacoben emente bas is converse of the apriate displacement of an in all gas cylinder.	

Question 5

(i) (a) Name a drying agent for ammonia.

[2]

- (b) Name a nitrate of a metal which on heating does not give nitrogen dioxide.
- Ans. (a) Quicklime (CaO) (b) Sodium nitrate (NaNO₃)
- (ii) For the electro-refining of copper:

[2]

- (a) What is the cathode made up of?
- (b) Write the reaction that takes place at the anode.
- Ans. (a) Thin sheets of pure copper connected in parallel.
 - (b) $Cu 2e^- \longrightarrow Cu^{2+}$
- (iii) Write a balanced chemical equation for each of the following :

[3]

- (a) Reaction of sodium hydroxide solution with iron (III) chloride solution.
- (b) Action of heat on aluminium hydroxide.
- (c) Reaction of zinc with potassium hydroxide solution.
- Ans. (a) FeCl₃ + 3NaOH → 3NaCl + Fe(OH)₃↓

(b)
$$2Al(OH)_3 \xrightarrow{1100^{\circ}C} Al_2O_3 + 3H_2O$$

(c)
$$Zn + 2KOH \xrightarrow{Boiling} K_2ZnO_2 + H_2(g)$$

(iv) State **one** relevant observation for each of the following:

- [3]
- (a) Lead nitrate solution is treated with sodium hydroxide solution dropwise till it is in excess.
 - (b) Lead nitrate solution is mixed with dilute hydrochloric acid and heated.
 - (c) Anhydrous calcium chloride is exposed to air for some time.
- Ans. (a) A chalky white precipitate of lead (II) hydroxide is formed. But when excess of sodium hydroxide is added the precipitate dissolves to form clear solution.
 - (b) A thick white precipitate of lead chloride is formed which dissolves on heating.
 - (c) Anhydrous calcium chloride absorbs moisture from the air then dissolves in the absorbed moisture to change into liquid state.

Question 6

(i) Give one word/words for the following statements:

[2]

- (a) The molecular weight of an element expressed in grams.
- (b) A formula of a chemical substance which tells the actual number of atoms in one molecule of a substance.
- Ans. (a) Gram-molecular weight
 - (b) Molecular formula
 - (ii) Given: $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$

[2]

2000 cc of O2 was burnt with 400 cc of ethane.

Calculate the volume of CO_2 formed and unused O_2 .

Ans. (i)
$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$
 [By Gay Lussac's law]

2 volumes of ethane require oxygen = 7 volumes

$$\therefore$$
 400 cc of ethane require oxygen = $\frac{7}{2}$ × 400 cc = 1400 cc

Thus, volume of unused $O_2 = 2000 \text{ cc} - 1400 \text{ cc} = 600 \text{ cc}$.

Again, 2 volumes of ethane produce $CO_2 = 4$ volumes

$$\therefore$$
 400 cc of ethane produce $CO_2 = \frac{4}{2} \times 400$ cc = 800 cc.

(iii) Study the flow chart given and give balanced equations to represent the reactions A, B and C:

$$Mg_3N_2$$
 \xrightarrow{A} NH_3 \xrightarrow{B} NH_4Cl

$$\textbf{Ans.} \hspace{0.2cm} \text{(a)} \hspace{0.2cm} \text{Mg}_3 \text{N}_2 \hspace{0.2cm} + \hspace{0.2cm} \text{6H}_2 \text{O} \hspace{0.2cm} \rightarrow \hspace{0.2cm} 3\text{Mg}(\text{OH})_2 \hspace{0.2cm} + \hspace{0.2cm} 2\text{NH}_3(\text{g})$$

(b)
$$NH_3(aq.) + HCl \rightarrow NH_4Cl(s)$$

(vapours) Dense white fumes

(c)
$$NH_4C1 \xrightarrow{\Delta} NH_3 + HC1$$

(iv) Some properties of sulphuric acid are listed below. Choose the role played by sulphuric acid as A, B or C which is responsible for the reactions (a) to (c).

(C) Oxidising agent

- (A) Dehydrating agent (B) Non-volatile acid
- (a) $CuSO_4.5H_2O \xrightarrow{conc.H_2SO_4} CuSO_4 + 5H_2O$
- (b) S + $2H_2SO_4$ (conc.) $\rightarrow 3SO_2 + 2H_2O$
- (c) NaCl + H_2SO_4 (conc.) $\xrightarrow{<200^{\circ}C}$ NaHSO₄ + HCl

Ans. (a) Dehydrating agent— (A) (b) Oxidising agent— (B) (c) Non-volatile acid— (C)

Question 7

(i) A gaseous hydrocarbon of vapour density 29, contains 82.76% of carbon. Calculate its empirical formula and molecular formula. [C = 12, H = 1][2]

Ans. %age of carbon = 82.76%.

∴ %age of hydrogen = (100 - 82.76) = 17.24%

Elements	%age weight	At. wt.	Relative number of atoms	Simple ratio of atoms		
С	82.76	12	82.76 ÷ 12 = 6.89	$6.89 \div 6.89 = 1 \text{ or } 2$		
Н	17.24	1	17.24 ÷ 1 = 17.24	17.24 ÷ 6.89 = 2.5 or 5		

- .. Empirical formula of hydrocarbon is C2H5.
- \therefore Empirical formula mass of hydrocarbon = 2(12) + 5(1) = 29

Vapour density of hydrocarbon = 29

 \therefore Molecular mass of hydrocarbon = 2 × V.D. = 2 × 29 = 58

 $n \times \text{Empirical formula mass} = \text{Molecular mass}$

$$n \times 29 = 58$$

$$n = 2$$

n = 2

- :. Molecular formula of hydrocarbon = $n \times \text{Empirical formula} = 2 \times C_2H_5 = C_4H_{10}$
- (ii) Write equations for :

[2]

[3]

- (a) Preparation of ethanol by hydration of C₂H₄.
- (b) Preparation of acetic acid from ethanol.

www.vashwantclasses.in

Ans. (a)
$$C_2H_4 + H_2SO_4$$
 (Conc.) $\xrightarrow{80^{\circ}C}$ $C_2H_5.HSO_4$

$$\rm C_2H_5.HSO_4 + H_2O$$
 (boiling.) $\rightarrow \rm C_2H_5OH + H_2SO_4$

(b)
$$C_2H_5OH \xrightarrow{[0]} CH_3CHO + H_2O \xrightarrow{[0]} CH_3COOH$$

- (iii) Write equations for the reactions taking place at the two electrodes (mentioning clearly the name of the electrode) during the electrolysis of:[3]
 - (a) Acidified copper sulphate solution with copper electrodes.
 - (b) Molten lead bromide with inert electrodes.
- Ans. (a) 1. At anode the copper atoms dissociate to form Cu²⁺ ions and enter in copper sulphate solution.

$$Cu \longrightarrow Cu^{2+} + 2e^-$$
 (at anode)

2. At cathode the copper ions discharge to form copper atoms deposit at cathode.

$$Cu^{2+} + 2\bar{e} \longrightarrow Cu$$
 (at cathode)

(b) At graphite anode the bromine ions discharge to form bromine atoms, which subsequently join to form bromine molecules.

$$Br^- - \bar{e} \longrightarrow Br$$
 (at anode)

$$Br + Br \longrightarrow Br_2$$

At graphite cathode the lead ions discharge to form lead atoms, which subsequently deposit on the cathode.

[3]

$$Pb^{2+} + 2\bar{e} \longrightarrow Pb$$
 (at cathode)

- (iv) A gas cylinder can hold 1 kg of hydrogen at room temperature and pressure :
 - (a) Find the number of moles of hydrogen present.
 - (b) What weight of CO_2 can the cylinder hold under similar conditions of temperature and pressure? (H = 1, C = 12, O = 16)
 - (c) If the number of molecules of hydrogen in the cylinder is X, calculate the number of CO₂ molecules in the cylinder under the same conditions of temperature and pressure.
 - (d) State the law that helped you to arrive at the above result.
- Ans. (a) 2g of hydrogen gas = 1 mole.

$$\therefore$$
 1000 g of hydrogen gas = $\frac{1000}{2}$ = 500 moles.

- (b) 1 mole of carbon dioxide = 44 g
 - \therefore 500 moles of carbon dioxide = 44 × 500 = 22000 g = 22 kg
 - ∴ Weight of carbon dioxide in cylinder = 22 kg.
- (iii) Equal volumes of all gases under similar conditions of temperature and pressure contain equal number of molecules.
 - :. Molecules in the cylinder of carbon dioxide = X.
- (iv) Avogadro's law.

Question 8

- (i) Draw the electron dot diagram for the compounds given below. Represent the electrons by (*) and (*) in the diagram. [Atomic No. : O = 8, Cl = 17, H = 1] [2]
 - (a) Chlorine molecule
- (b) Water molecule

Ans. (a)

Chlorine molecule

Water molecule

- (ii) Distinguish between the following pairs of compounds using the reagent given in the bracket.
 - (a) Ferrous sulphate solution and ferric sulphate solution. (using sodium hydroxide solution)
 - (b) Dilute hydrochloric acid and dilute sulphuric acid. (using lead nitrate solution)

Ans. (a)
$$FeSO_4$$
 + $2NaOH$ \longrightarrow Na_2SO_4 + $Fe(OH)_2 \downarrow$

Ferrous sulphate

In this case dirty green precipitate of Fe(OH)2 is formed which is insoluble in excess of alkali.

$$Fe_2(SO_4)_3 + 6NaOH \longrightarrow 3Na_2SO_4 + 2Fe(OH)_3 \downarrow$$

Ferric sulphate

In this case reddish-brown precipitate of Fe(OH)3 is formed which is insoluble in excess of alkali.

(b)
$$Pb(NO_3)_2$$
 (sol.) + $2HCl(dil.) \longrightarrow 2HNO_3 + PbCl_2 \downarrow$

In this case, a thick white precipitate of PbCl₂ and HNO₃ acid are formed. The precipitate dissolves on heating the mixture.

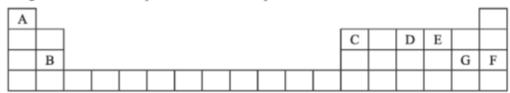
$$Pb(NO_3)_2$$
 (sol.) + $H_2SO_4 \longrightarrow 2HNO_3 + PbSO_4 \downarrow$

In this case, a white precipitate of PbSO₄ and HNO₃ are formed. This precipitate is insoluble in all acids and the precipitate does not dissolve on heating.

(iii) State the observations at the anode and at the cathode during the electrolysis of :

[3]

[2]


- (a) fused lead bromide using graphite electrodes.
- (b) copper sulphate solution using copper electrodes.
- Ans. (a) At cathode silvery droplets of molten lead appear.

At anode reddish vapours of bromine are given out.

(b) At cathode a fresh layer of reddish copper is deposited

At anode fresh layer of copper is exposed on account of dissolving in copper sulphate solution.

(iv) Study the extract of the Periodic Table given below and answer the questions that follow. Give the alphabet corresponding to the element in question. DO NOT repeat an element. [3]

- (a) Which element forms electrovalent compound with G?
- (b) The ion of which element will migrate towards the cathode during electrolysis?
- (c) Which non-metallic element has the valency of 2?
- Ans. (a) Element B (Mg) (b) Element A (H) (c) Element E (O)