

**Subject: MATHS** 

Answer to this Paper must be written on the paper provided separately.

You will not be allowed to write during first 15 minutes.

This time is to be spent in reading the question paper.

The time given at the head of this Paper is the time allowed for writing the answers.

Section A is compulsory. Attempt any four questions from Section B.

The intended marks for questions or parts of questions are given in brackets [].

# **SECTION A (40 MARKS)**

(Attempt all questions from this Section)

| tion 1 : Choose the correct                       | answers to the questions from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the given options:                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | He sold it to a consumer a                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t a profit of \$6000. If the rate of GST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (a) ₹1680                                         | (b) ₹1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) ₹2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) ₹2420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ii) The roots of the quadratic                    | c equation $3x^2 - 2x + 1 = 0$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (a) real and distinct                             | (b) rational and unequal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c) real and equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) not real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ff) On dividing $f(x)$ by $(2x + $                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (a) 0                                             | (b) $f\left(\frac{2}{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (e) $f\left(\frac{-3}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) $f\left(\frac{-2}{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| v) Which of the following is                      | s a diagonal matrix?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FO 0 17                                           | [5 0 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [0 1 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (a) 0 1 0                                         | (b) 0 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) 0 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 0 1                                             | 0 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (v) 10% ₹100 shares at ₹120                       | means annual dividend on 1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hare is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   | CONTRACTOR SECTION CONTRACTOR CON |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (B) [전: 4] [10] [10] [10] [10] [10] [10] [10] [10 | (b) (2, -3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) (-2, -3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d) (-2, 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | perimeter of AABC is :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (a) AB × DE                                       | (b) <u>BC</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) AC DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | cylinders are in the ratio 4:5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and their heights are in the                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ratio 5: 3. The ratio of their volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (a) 8:5                                           | (b) 16:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) 17:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) 13:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| h) The 5th term from the ex                       | nd of the GP 2, 6, 18, 13122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 ia:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (a) 54                                            | (b) 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) 1458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (a) 1                                             | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (e) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (a) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   | (i) A shopkeeper bought an is 28%, then the tax liable (a) ₹1680  ii) The roots of the quadratic (a) real and distinct (ii) On dividing f(x) by (2x + (a) 0  iv) Which of the following is [0 0 1 0 1 0 1]  (a) [0 0 1 0 1]  (b) 10% ₹100 shares at ₹120 (a) ₹10  iii) The reflection of the point (a) (2, 3)  iii) If △ABC ~ △DEF, then Is (a) AB × DE  iii) The radii of two circular is: (a) 8:5  iii) The 5th term from the ex (a) 54  ii) A bag contains 4 red and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>(i) A shopkeeper bought an LED for ₹24,000 from a dealer is 28%, then the tax liability of the shopkeeper is;</li> <li>(a) ₹1680 (b) ₹1800</li> <li>(b) ₹1800</li> <li>(c) ₹1680 (b) ₹1800</li> <li>(d) The roots of the quadratic equation 3x² - 2x + 1 = 0 are (a) real and distinct (b) rational and unequal the one dividing f(x) by (2x + 3), the remainder is:</li> <li>(a) 0 (b) f(2/3)</li> <li>(b) f(2/3)</li> <li>(c) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</li></ul> | (a) ₹1680 (b) ₹1800 (c) ₹2000  ii) The roots of the quadratic equation $3x^2 - 2x + 1 = 0$ are:  (a) real and distinct (b) rational and unequal (c) real and equal  iii) On dividing $f(x)$ by $(2x + 3)$ , the remainder is:  (a) 0 (b) $f\left(\frac{2}{3}\right)$ (c) $f\left(\frac{-3}{2}\right)$ iv) Which of the following is a diagonal matrix?  (a) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 5 & 4 \\ 1 & 0 & 0 \end{bmatrix}$ (v) 10% ₹100 shares at ₹120 means annual dividend on 1 share is:  (a) ₹10 (b) ₹12 (c) ₹2  (a) ₹10 (b) ₹12 (c) ₹2  (b) 16 ₹2  (c) ₹2  (d) $\begin{bmatrix} 4C \\ DE \end{bmatrix}$ (ii) The reflection of the point $\begin{bmatrix} 4C \\ DE \end{bmatrix}$ (a) $\begin{bmatrix} 4C \\ DE \end{bmatrix}$ (b) $\begin{bmatrix} 4C \\ DE \end{bmatrix}$ (c) $\begin{bmatrix} 4C \\ DE \end{bmatrix}$ (d) $\begin{bmatrix} 4C \\ DE \end{bmatrix}$ (e) $\begin{bmatrix} 4C \\ DE \end{bmatrix}$ (f) The radii of two circular cylinders are in the ratio 4:5, and their heights are in the is:  (a) 8:5 (b) 16:15 (c) 17:13  (a) 54 (b) 162 (c) 486  (b) 162 (c) 486  (c) 486  (d) A bag contains 4 red and 8 blue marbles. A marble is drawn at random. The probability of the contains 4 red and 8 blue marbles. A marble is drawn at random. The probability of the contains 4 red and 8 blue marbles. A marble is drawn at random. The probability of the contains 4 red and 8 blue marbles. A marble is drawn at random. |

- (xi) In a size transformation with scale factor k, the area of the given figure is
  - (a)  $k \times$  area of the resulting figure

(b)  $k^2 \times$  area of the resulting figure

(c)  $\frac{1}{k}$  × area of the resulting figure

- (d)  $\frac{1}{k^2}$  × area of the resulting figure
- (xii) The point P(1, 2) divides the join of A(-2, 1) and B(7, 4) in the ratio:
  - (a) 1:2
- (b) 2:1
- (c) 3:2
- (d) 2:3
- (xiii) In the given figure, if \( \textstyle DAB = 60^\circ \) and \( \textstyle ABD = 50^\circ, \) then \( \textstyle ACB \) is equal to :
  - (a) 60

- (b) 50°
- (c) 70°

- (d) 80°
- (xiv) The sum of first 10 terms of the AP whose nth term is  $T_n = 2n + 1$ , is:
  - (a) 100

- (b) 120
- (c) 125
- (d) 130
- (xv) The lower quartile of given observations 21, 14, 19, 18, 10, 15, 11 is:
  - (a) 10

(b) 11

(c) 14

(d) 15

#### Question 2:

- (i) Mrs. Bhatnagar has a 4 years time deposit account and deposits ₹650 per month. If she received ₹36,296 at the time of maturity, find the rate of interest.
- (ii) If a, b, c are in continued proportion, prove that  $\frac{(a+b)^2}{(b+c)^2} = \frac{a}{c}$ .

[4]

50

- (iii) By selling at ₹92 some 2½% shares of face value ₹100 and investing the proceeds in 5% shares of face value ₹100 selling at ₹115, a person increased his income by ₹90 a year. Find .
  - (a) the number of shares sold

(b) the number of shares bought

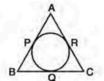
(c) the original income

#### Question 3:

- (i) The curved surface area of a cylinder is 5,500 cm<sup>2</sup> and the circumference of the base is 110 cm. Find the height and volume of the cylinder.
  [4]
- (ii) Find the equation of the straight line passing through the intersection of 2x + 5y = 4 with x-axis and parallel to the line 3x 7y = -8.
- (iii) Use graph paper for this question. Take 1 cm = 1 unit on both axes.
  - (a) Plot the points P (2, 3) and Q (3, 1).
  - (b) Reflect P in x-axis to P'. Reflect P' in y-axis to P". Write coordinates of P' and P".
  - (c) Reflect Q in y-axis to Q' and reflect Q' in the origin to Q". Write coordinates of Q' and Q".
  - (d) Write the geometrical name of PQQ"P'.

[5]

# SECTION B (Attempt any four questions)


#### Question 4:

- (i) A dealer purchased goods for ₹16,50,000 and sold them for ₹20,00,000 within the state. If the rate of GST is 12%, find the net CGST and SGST payable by the dealer.
- (ii) Solve the quadratic equation  $x^2 3(x + 3) = 0$ ; Give your answer correct to two significant figures.
- (iii) If pth, qth and rth terms of a GP be a, b, c respectively, then prove that  $a^{q-r} \times b^{r-p} \times c^{p-q} = 1$ .
- [3] [4]

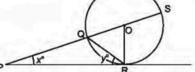
#### Question 5:

- (i) If  $A = \begin{bmatrix} 1 & -2 \\ 3 & 6 \end{bmatrix}$  and  $B = \begin{bmatrix} 3 & -4 \\ -2 & 5 \end{bmatrix}$ , find a matrix X such that X + A = B.
- (ii) In the figure, the incircle of ΔABC touches the sides AB, BC and CA at the points P, Q, R respectively.

Show that 
$$AP + BQ + CR = BP + CQ + AR$$
  
=  $\frac{1}{2}$  (perimeter of  $\triangle ABC$ ).



[3]

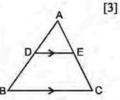

(iii) If the expression  $x^3 + ax + b$  is divided by (x + 1) and (x + 2), it gives the same remainder 12. Find the values of a and b.

#### Question 6:

- (i) Find the gradient and the intercept on the y-axis of the line 3y + 2x 12 = 0.
- (ii) Show that  $(1 + \cot A \csc A)(1 + \tan A + \sec A) = 2$  [3]
- (iii) Find the sum (-5) + (-8) + (-11) + ... (-62). [4]

#### Question 7:

- (i) The king, queen and jack of clubs are removed from a deck of playing cards and the remaining cards are shuffled. A card is drawn from the remaining cards. Find the probability of getting a card of heart. [3]
- (ii) The sides of a rectangular plot of land in a map were 12 cm and 5 cm. The map was drawn to scale 1 : 2000. Find the (a) diagonal of the plot in m (b) area of the plot in m<sup>2</sup>.
  [3]
- (iii) In the figure, PT touches a circle with centre O at R. Diameter SQ when produced meets PT at P. If  $\angle$ SPR =  $x^0$ , and  $\angle$ QRP =  $y^0$ , show that  $x^0 + 2y^0 = 90^\circ$ . [4]




Question 8:

- (i) Solve the inequation: 8 < 5  $(x + 1) 2 \le 18$ ,  $x \in \mathbb{R}$ . Graph the solution set.
- (ii) Find the mean of the following data:

| Class     | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
|-----------|------|-------|-------|-------|-------|
| Frequency | 12   | 16    | 6     | 7     | 9     |

(iii) In the figure, DE  $\parallel$  BC. If AD = 3.4 cm, AB = 8.5 cm, and AC = 13.5 cm, find AE.



Question 9:

- (i) Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of length 6 cm and 5 cm respectively. [4]
  - (a) Construct the locus of points inside the circle that are equidistant from A and C.
  - (b) Construct the locus of points inside the circle that are equidistant from AB and AC.
- (ii) Weight of 100 students is recorded below:

| Weight in kg    | 30-35 | 35-40 | 40-45 | 45-50 | 50-55 | 55-60 |
|-----------------|-------|-------|-------|-------|-------|-------|
| No. of students | 4     | 16    | 40    | 22    | 10    | 8     |

Draw an ogive and hence estimate the median.

[6]

[3]

[3]

#### Question 10:

(i) If 
$$\frac{7m+2n}{7m-2n} = \frac{5}{3}$$
, use properties of proportion to find,  $m:n$ 

- (ii) Construct a triangle ABC in which AB = 6 cm, BC = 4 cm and AC = 5.5 cm.

  Draw the incircle of the triangle.

  [3]
- (iii) From the top of a building 20 m high, the angle of elevation of the top of a monument is 45° and the angle of depression of its foot is 15°. Find the height of the monument.

# **Subject Code:** YC MATHS 10



**Subject: MATHS** 

### Solution:

- (i) (a) Disered tax liability = 28% of ₹6000 = ₹1680.
- (ii) (d) Here D =  $(-2)^2 4 \times 3 \times 1 = -8 < 0$ So, the roots are not real.

(iii) (c) 
$$2x + 3 = 0 \Rightarrow x = -\frac{3}{2}$$
. So, required remainder is  $f\left(\frac{-3}{2}\right)$ 

- (v) (a) Annual dividend = 10% of ₹100 = ₹10
- (vi) (a)  $R_v(-2, -3) = (2, 3)$
- (vii) (b)

(viii) (b) Required ratio = 
$$\frac{\pi \times (4x)^2 \times 5y}{\pi \times (5x)^2 \times 3y} = \frac{16 \times 5}{25 \times 3} = 16 : 15.$$

(ix) (b) Required term = 
$$\frac{13122}{3^4}$$
 = 162.

- (x) (c) Required probability =  $\frac{4}{12} = \frac{1}{3}$
- (xi) (d)

(xii) (a) Let the required ratio be 
$$m:1$$
; Then,  $1 = \frac{m \times 7 + 1 \times (-2)}{m+1}$   
 $\Rightarrow m+1 = 7m-2 \Rightarrow 6m = 3 = m = \frac{1}{2}$   
 $\therefore$  Required ratio is  $\frac{1}{2}:1=1:2$ .

(xiii) (c) 
$$\angle ADB = 180^{\circ} - (60^{\circ} + 50^{\circ}) = 70^{\circ}$$
  
 $\angle ACB = \angle ADB = 70^{\circ}$ 

(xiv) (b) 
$$d = T_2 - T_1 = 5 - 3 = 2 \Rightarrow S_{10} = \frac{10}{2} [2 \times 3 + (10 - 1) \times 2] = 120$$

(xv) (a) Here, 
$$n = 8$$
, so median  $= \frac{1}{2} \left[ \text{value of } \left( \frac{8}{2} \right)^{\text{th}} \text{ observation} + \text{value of } \left( \frac{8}{2} + 1 \right)^{\text{th}} \text{ observation} \right]$   

$$= \frac{1}{2} (24 - x + 22 + 2x) = \frac{1}{2} (46 + x)$$

$$\Rightarrow 24 = \frac{1}{2} (46 + x) \Rightarrow 46 + x = 48 \Rightarrow x = 2.$$

#### Question 2:

(i) Mrs. Bhatnagar has a 4 years time deposit account and deposits ₹650 per month. If she received ₹36296 at the time of maturity, find the rate of interest.

(ii) If a, b, c are in continued proportion, prove that 
$$\frac{(a+b)^2}{(b+c)^2} = \frac{a}{c}$$
. [4]

- (iii) By selling at ₹92 some  $2\frac{1}{2}\%$  shares of face value ₹100 and investing the proceeds in 5% shares of face value ₹100 selling at ₹115, a person increased his income by ₹90 a year. Find . [4]
  - (a) the number of shares sold

(b) the number of shares bought

(c) the original income **Solution**: (i) n = 48 months, P = 7650

∴ S. I.= P × 
$$\frac{n(n+1)}{2}$$
 ×  $\frac{r}{100}$  ×  $\frac{1}{12}$  = ₹  $\left\{650 \times \frac{48 \times 49}{2} \times \frac{r}{100} \times \frac{1}{12}\right\}$  = ₹ 637 $r$ 

.. Total amount received on maturity = ₹ (48 × 650 + 637r)

But,  $48 \times 650 + 637r = 36296$ 

$$\Rightarrow 637r = 36296 - 31200 = 5096 \Rightarrow r = \frac{5096}{637} = 8$$

Hence, rate of interest = 8% Ans.

www.yashwantclasses.in

$$\frac{a}{b} = \frac{b}{c} \Rightarrow b^2 = ac$$

Now, LHS = 
$$\frac{(a+b)^2}{(b+c)^2} = \frac{a^2+b^2+2ab}{b^2+c^2+2bc} = \frac{a^2+ac+2ab}{ac+c^2+2bc} = \frac{a(a+c+2b)}{c(a+c+2b)} = \frac{a}{c} = \text{RHS}$$
 Proved.

(iii) (a) Let the number of shares sold = 
$$x$$

$$\therefore$$
 Number of shares bought =  $\frac{92x}{115}$ 

∴ New income = 
$$₹\frac{92x}{115} × 5 = ₹\frac{92x}{23}$$

Original income = 
$$\sqrt[3]{2} \times x = \sqrt[3]{\frac{5}{2}} x$$

But, 
$$\frac{92x}{23} - \frac{5}{2}x = 90 \Rightarrow \frac{184x - 115x}{46} = 90 \Rightarrow \frac{69x}{46} = 90 \Rightarrow x = 90 \times \frac{46}{69} = 60$$

(b) Number of shares bought = 
$$\frac{92x}{115} = \frac{92 \times 60}{115} = 48$$
 Ans.

(c) Original income = 
$$\sqrt[3]{5} x = \sqrt[3]{5} \times 60 = \sqrt[3]{150}$$
 Ans.

#### Question 3:

- (i) The curved surface area of a cylinder is 5,500 cm<sup>2</sup> and the circumference of the base is 110 cm. Find the height and volume of the cylinder. [4]
- (ii) Find the equation of the straight line passing through the intersection of 2x + 5y = 4 with x-axis and parallel to the line 3x 7y = -8.

[5]

- (iii) Use graph paper for this question. Take 1 cm = 1 unit on both axes.
  - (a) Plot the points P (2, 3) and Q (3, 1).
  - (b) Reflect P in x-axis to P'. Reflect P' in y-axis to P". Write coordinates of P' and P".
  - (c) Reflect Q in y-axis to Q' and reflect Q' in the origin to Q". Write coordinates of Q' and Q".
  - (d) Write the geometrical name of PQQ"P'.

#### Solution:

(i) 
$$2\pi r = 110 \Rightarrow r = \frac{110 \times 7}{2 \times 22} = 17.5 \text{ cm}$$

Also, curved surface area of the cylinder =  $2\pi rh$ 

$$\Rightarrow 5,500 = 2\pi rh \Rightarrow 5,500 = 110 \times h \Rightarrow h = \frac{5,500}{110} = 50 \text{ cm}$$
 Ans.

$$\therefore \text{ Volume of the cylinder} = \pi r^2 h = \frac{22}{7} \times 17.5 \times 17.5 \times 50 \text{ cm}^3 = 48,125 \text{ cm}^3 \text{ Ans.}$$

- (ii) Given line is 2x + 5y = 4; Equation of x-axis is y = 0.
  - $\therefore 2x + 0 = 4 \Rightarrow x = 2$
  - $\Rightarrow$  Coordinates of the point of intersection of 2x + 5y = 4 and x-axis are (2, 0).

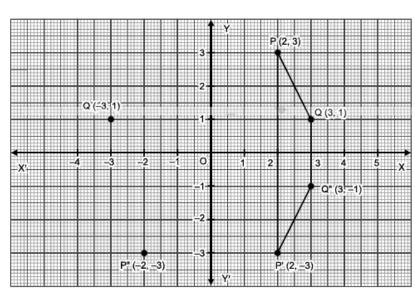
Let the equation of the required line be y = mx + c ....(1)

- : (1) passes through (2, 0)
- $0 = 2m + c \Rightarrow 2m + c = 0$

.... (2)

Again, (1) is parallel to 3x - 7y = -8

or 
$$y = \frac{3x}{7} + \frac{8}{7}$$


$$\therefore \quad \text{Gradient } m \text{ of } (1) = \frac{3}{7}$$

Putting 
$$m = \frac{3}{7}$$
 in (2), we have,  $2 \times \frac{3}{7} + c = 0 \Rightarrow c = -\frac{6}{7}$ 

Substituting 
$$m = \frac{3}{7}$$
 and  $c = -\frac{6}{7}$  in (1), we get,  $y = \frac{3}{7}x - \frac{6}{7}$ 

$$\Rightarrow$$
 7y = 3x - 6  $\Rightarrow$  3x - 7y = 6, which is the required equation. Ans.

(iii)



- (a) The given points have been plotted.
- (b) Coordinates of P' are (2, -3) and coordinates of P" are (-2, -3) Ans.
- (c) Coordinates of Q' and Q" are respectively (-3, 1), and (3, -1). Ans.
- (d) PQQ"P' is an isosceles trapezium. Ans.

#### Question 4:

- (i) A dealer purchased goods for ₹16,50,000 and sold them for ₹20,00,000 within the state. If the rate of GST is 12%, find the net CGST and SGST payable by the dealer.
- (ii) Solve the quadratic equation  $x^2 3(x + 3) = 0$ ; Give your answer correct to two significant figures. [3]
- (iii) If pth, qth and rth terms of a GP be a, b, c respectively, then prove that  $a^{q-r} \times b^{r-p} \times c^{p-q} = 1$ . [4]
  - (i) Purchase price for the dealer = ₹16,50,000
    - ∴ Input GST = CGST + SGST = 6% of ₹16,50,000 + 6% of ₹16,50,000 = ₹99,000 + ₹99,000

Selling price = ₹20,00,000

Net CGST paid by the dealer = ₹(1,20,000 - 99,000) = ₹21,000 Ans.

Net SGST paid by the dealer = ₹(1,20,000 - 99,000) = ₹21,000 Ans.

(ii) We have, 
$$x^2 - 3(x + 3) = 0 \Rightarrow x^2 - 3x - 9 = 0$$

$$\Rightarrow x = \frac{3 \pm \sqrt{(-3)^2 - 4 \times 1 \times (-9)}}{2 \times 1} \Rightarrow x = \frac{3 \pm \sqrt{9 + 36}}{2} \Rightarrow x = \frac{3 \pm 6.70}{2}$$
$$\Rightarrow x = \frac{9.70}{2} \text{ or } x = \frac{-3.70}{2} \Rightarrow x = 4.85 \text{ or } x = -1.85$$

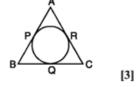
$$\Rightarrow x = 4.9 \text{ or } x = -1.9 \text{ Ans.}$$

Then, 
$$T_p = a \Rightarrow AR^{p-1} = a$$
  
 $T_q = b = AR^{q-1} = b$   
 $T_r = c = AR^{r-1} = c$ 

$$T_r = c = AR^{r-1} = c$$
Now,  $a^{q-r} \times b^{r-p} \times c^{p-q} =$ 

$$= (AR^{p-1})^{q-r} \times (AR^{q-1})^{r-p} \times (AR^{r-1})^{p-q}$$

$$= A^{q-r} + r-p + p-q \times R^{(p-1)(q-r)+(q-1)(r-p) + (r-1)(p-q)}$$


$$= A^0 \times R^0 = 1 \text{ Proved.}$$

Question 5:

(i) If 
$$A = \begin{bmatrix} 1 & -2 \\ 3 & 6 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 3 & -4 \\ -2 & 5 \end{bmatrix}$ , find a matrix X such that  $X + A = B$ .

(ii) In the figure, the incircle of ΔABC touches the sides AB, BC and CA at the points P, Q, R respectively.

Show that AP + BQ + CR = BP + CQ + AR  
= 
$$\frac{1}{2}$$
 (perimeter of  $\triangle$ ABC).



(iii) If the expression  $x^3 + ax + b$  is divided by (x + 1) and (x + 2), it gives the same remainder 12. Find the values of a and b.

Solution:

(i) 
$$X + A = B \Rightarrow X + A + (-A) = B + (-A)$$
  
 $\Rightarrow X + [A + (-A)] = B + (-A)$   
 $\Rightarrow X + O = B + (-A)$   
 $\Rightarrow X = B + (-A) \Rightarrow X = \begin{bmatrix} 3 & -4 \\ -2 & 5 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ -3 & -6 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -5 & -1 \end{bmatrix}$  Ans.

(ii) We know that the tangents drawn from an external point to a circle are equal.

:. 
$$AP + BQ + CR = AR + BP + CQ$$
  
Now, perimeter of  $\triangle ABC = AB + BC + C$ 

Now, perimeter of  $\triangle ABC = AB + BC + CA$ 

$$= AP + PB + BQ + QC + CR + AR$$

:. AP = AR, BQ = BP and CR = CQ

$$= (AP + BQ + CR) + (PB + QC + AR)$$

$$= 2 (AP + BQ + CR)$$

$$\Rightarrow$$
 AP + BQ + CR = AR + BP + CQ =  $\frac{1}{2}$  (perimeter of  $\triangle$ ABC)

$$\Rightarrow$$
 AP + BQ + CR = BP + CQ + AR =  $\frac{1}{2}$  (perimeter of  $\triangle$ ABC) **Proved.**



(iii) Let 
$$f(x) = x^3 + ax + b$$

On dividing f(x) by (x + 1), we have

$$f(-1) = (-1)^3 + a(-1) + b = 12$$

$$\Rightarrow$$
  $-1-a+b=12$ 

$$\Rightarrow -a+b=13 \qquad .... (1)$$

Again dividing f(x) by (x + 2), we have

$$f(-2)=(-2)^3+a(-2)+b=12$$

$$\Rightarrow$$
  $-8-2a+b=12$ 

$$\Rightarrow -2a+b=20 \qquad ... (2)$$

Subtracting (1) from (2), we get

$$-a = 7$$
  $\Rightarrow a = -7$ 

Substituting a = -7 in (1), we get

$$7 + b = 13 \implies b = 6$$

Hence, a = -7, b = 6 Ans.

#### Question 6:

- (i) Find the gradient and the intercept on the y-axis of the line 3y + 2x 12 = 0. [3]
- (ii) Show that  $(1 + \cot A \operatorname{cosec} A)(1 + \tan A + \operatorname{sec} A) = 2$ [3]
- (iii) Find the sum (-5) + (-8) + (-11) + ... (-62). [4]

#### Solution:

(i) 
$$3y + 2x - 12 = 0 \implies 3y = -2x + 12 \implies y = \left(-\frac{2}{3}\right)x + 4$$
  
Comparing it with  $y = mx + c$ , we get  $m = -\frac{2}{3}$  and  $c = 4$   
Gradient (slope)  $m = -\frac{2}{3}$  and intercept on y-axis = 4 units. Ans.

(ii) LHS = 
$$(1 + \cot A - \csc A)(1 + \tan A + \sec A)$$
  
=  $\left(1 + \frac{\cos A}{\sin A} - \frac{1}{\sin A}\right) \left(1 + \frac{\sin A}{\cos A} + \frac{1}{\cos A}\right)$   
=  $\left(\frac{\sin A + \cos A - 1}{\sin A}\right) \left(\frac{\cos A + \sin A + 1}{\cos A}\right)$   
=  $\left(\frac{(\sin A + \cos A) - 1}{\sin A}\right) \left\{\frac{(\sin A + \cos A) + 1}{\cos A}\right\}$   
=  $\frac{(\sin A + \cos A)^2 - 1^2}{\sin A \cos A}$  [ :  $(a - b)(a + b) = a^2 - b^2$ ]  
=  $\frac{\sin^2 A + \cos^2 A + 2\sin A \cos A - 1}{\sin A \cos A} = \frac{2\sin A \cos A}{\sin A \cos A} = 2$  = RHS Proved.

(iii) Here, 
$$a = -5$$
,  $d = -8 - (-5) = -3$ ,  $l = -62$   
Let the given AP has  $n$  terms.

Then, 
$$T_n = l = a + (n - 1) d$$

$$\Rightarrow -62 = -5 + (n-1)(-3)$$

$$\Rightarrow n-1 = \frac{-62+5}{(-3)} = 19$$

$$\Rightarrow n = 20$$

:. Sum of the given AP = 
$$\frac{n}{2}$$
  $(a + I) = \frac{20}{2}$   $[-5 + (-62)] = 10 \times (-67) = -670$ . Ans.

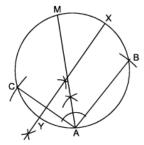
www.yashwantclasses.in

#### Question 7:

(i) Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of length 6 cm and 5 cm respectively.

151

- (a) Construct the locus of points inside the circle that are equidistant from A and C.
- (b) Construct the locus of points inside the circle that are equidistant from AB and AC.
- (ii) Weight of 100 students is recorded below:

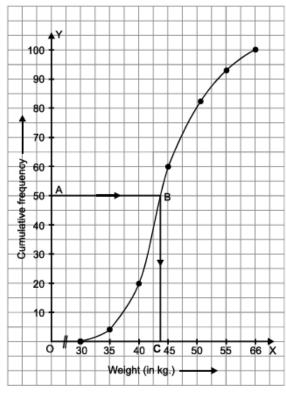

| Weight in kg    | 30-35 | 35-40 | 40-45 | 45-50 | 50-55 | 55-60 |
|-----------------|-------|-------|-------|-------|-------|-------|
| No. of students | 4     | 16    | 40    | 22    | 10    | 8     |

Draw an ogive and hence estimate the median.

[5]

#### Solution:

(i) (a) XY is the locus of points equidistant from A and C.

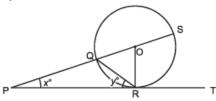



(b) MA is the locus of points equidistant from AB and AC.

| (ii) | Weight<br>(in kg) | No. of students | Cumulative frequency |
|------|-------------------|-----------------|----------------------|
|      | 30-35             | 4               | 4                    |
|      | 35-40             | 16              | 20                   |
|      | 40-45             | 40              | 60                   |
|      | 45-50             | 22              | 82                   |
|      | 50-55             | 10              | 92                   |
|      | 55-60             | 8               | 100                  |
|      |                   | N = 100         |                      |

$$N = 100 \Rightarrow \frac{N}{2} = 50$$

Let A denote 50 on the y-axis. From A, draw AB parallel to x-axis, which meets the ogive at B. From B, draw BC  $\perp x$  axis. The abscissa of C is 44. So, median = 44 Ans.




#### Question 8:

- (i) The king, queen and jack of clubs are removed from a deck of playing cards and the remaining cards are shuffled.

  A card is drawn from the remaining cards. Find the probability of getting a card of heart. [3]
- (ii) The sides of a rectangular plot of land in a map were 12 cm and 5 cm. The map was drawn to scale 1: 2000. Find the (a) diagonal of the plot in m (b) area of the plot in m<sup>2</sup>.

(iii) In the figure, PT touches a circle with centre O at R. Diameter SQ when produced meets PT at P. If  $\angle$ SPR =  $x^{\circ}$  and  $\angle$ QRP =  $y^{\circ}$ , show that  $x^{\circ} + 2y^{\circ} = 90^{\circ}$ .



Solution:

(i) Total number of outcomes = 52 - 3 = 49Number of favourable outcomes = 13

 $\therefore P(a heart) = \frac{Number of favourable outcomes}{total number of outcomes} = \frac{13}{49} Ans.$ 

(ii) Here the scale factor,  $k = \frac{1}{2000}$ 

(a) Diagonal length on the map =  $\sqrt{12^2 + 5^2} = \sqrt{169} = 13$  cm.

Diagonal length of the plot =  $\frac{1}{k}$  × diagonal length on the map

 $= 2000 \times 13$  cm = 260 m. Ans.

- (b) Area of the plot =  $\frac{1}{k^2}$  × area on the map =  $(2000)^2$  × 12 × 5 cm<sup>2</sup> =  $\frac{(2000)^2 \times 12 \times 5}{10000}$  m<sup>2</sup> = 24,000 m<sup>2</sup> Ans.
- (iii) ∠PRO = 90° [Radius through the point of contact is perpendicular to the tangent]

$$\Rightarrow \angle ORQ = 90^{\circ} - y^{\circ}$$

Also, OR = OQ

[Radii of the same circle]

$$\Rightarrow \angle OQR = \angle ORQ = 90^{\circ} - y^{\circ}$$

In  $\triangle PQR$ ,  $\angle OQR = \angle QPR + \angle QRP$ 

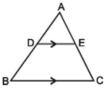
[Exterior angle = sum of two interior opposite angles]

$$\Rightarrow$$
 90° -  $y^{\circ} = x^{\circ} + y^{\circ}$ 

$$\Rightarrow x^{\circ} + 2y^{\circ} = 90^{\circ}$$
 Proved.



(i) Solve the inequation : 8 < 5  $(x + 1) - 2 \le 18$ ,  $x \in \mathbb{R}$ . Graph the solution set.


[3]

[3]

(ii) Find the mean of the following data:

| Class     | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
|-----------|------|-------|-------|-------|-------|
| Frequency | 12   | 16    | 6     | 7     | 9     |

(iii) In the figure, DE || BC. If AD = 3.4 cm, AB = 8.5 cm, and AC = 13.5 cm, find AE. [4]



#### Solution:

(i) 
$$8 < 5 (x + 1) - 2 \le 18, x \in \mathbb{R}$$
  
 $\Rightarrow 8 < 5 (x + 1) - 2 \text{ and } 5 (x + 1) - 2 \le 18, x \in \mathbb{R}$   
 $\Rightarrow 8 < 5x + 5 - 2 \text{ and } 5x + 5 - 2 \le 18, x \in \mathbb{R}$   
 $\Rightarrow 8 - 3 < 5x \text{ and } 5x \le 18 - 3, x \in \mathbb{R}$ 

 $\Rightarrow$  1 < x and x \le 3, x \in R \Rightarrow 1 < x \le 3, x \in R

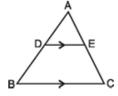
 $\therefore$  Solution set =  $\{x : 1 < x \le 3, x \in R\}$ 

Graph of the solution set is shown below:

| - |                 |               | _              |   |   | $\rightarrow$ |
|---|-----------------|---------------|----------------|---|---|---------------|
| • | <del>-</del> ;- | $\overline{}$ | <del>-</del> - | - |   | 4             |
|   | _               | U             |                | 2 | 3 | 4             |

| (ii) | Class | Frequency (fi)    | Class marks (xi) | $f_i x_i$               |
|------|-------|-------------------|------------------|-------------------------|
|      | 0-10  | 12                | 5                | 60                      |
|      | 10–20 | 16                | 15               | 240                     |
|      | 20–30 | 6                 | 25               | 150                     |
|      | 30–40 | 7                 | 35               | 245                     |
|      | 40–50 | 9                 | 45               | 405                     |
|      |       | $\Sigma f_i = 50$ |                  | $\Sigma f_i x_i = 1100$ |

Mean 
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1100}{50} = 22$$
 Ans.


(iii) Since, DE || BC, then by Basic Proportionality Theorem, we have

$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{AD}{AB - AD} = \frac{AE}{AC - AE}$$

$$\Rightarrow \frac{3.4}{8.5 - 3.4} = \frac{AE}{13.5 - AE} \Rightarrow \frac{3.4}{5.1} = \frac{AE}{13.5 - AE}$$

$$\Rightarrow \frac{2}{3} = \frac{AE}{13.5 - AE} \Rightarrow 3AE = 27 - 2AE \Rightarrow AE = \frac{27}{5} = 5.4 \text{ cm} \quad \text{Ans.}$$



Question 10:

(i) If 
$$\frac{7m+2n}{7m-2n} = \frac{5}{3}$$
, use properties of proportion to find,  $m:n$ 

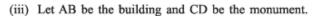
(ii) Construct a triangle ABC in which AB = 6 cm, BC = 4 cm and AC = 5.5 cm.

Draw the incircle of the triangle.

[3]

(iii) From the top of a building 20 m high, the angle of elevation of the top of a monument is 45° and the angle of depression of its foot is 15°. Find the height of the monument.

Solution:


(i) We have, 
$$\frac{7m+2n}{7m-2n} = \frac{5}{3}$$

$$\Rightarrow \frac{7m+2n+7m-2n}{7m+2n-7m+2n} = \frac{5+3}{5-3} \qquad \text{[Applying componendo and dividendo]}$$

$$\Rightarrow \frac{14m}{4n} = \frac{8}{2} \Rightarrow \frac{7m}{2n} = \frac{4}{1} \Rightarrow \frac{m}{n} = \frac{4}{1} \times \frac{2}{7} = \frac{8}{7} \Rightarrow m: n = 8:7 \quad \text{Ans.}$$

## (ii) Steps of Construction:

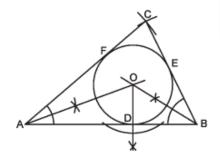
- 1. Draw AB = 6 cm.
- With A and B as centres and radii equal to 5.5 cm and 4 cm respectively, draw two arcs. These arcs cut each other at C.
- 3. Join AC and BC to get the required triangle.
- Draw the bisectors of ∠A and ∠B. The bisectors of these angles meet at O.
- 5. From O, draw perpendicular on AB, which meets AB at D.
- With O as centre and OD as radius, draw a circle, which touches the sides AB, BC and AC at D, E and F respectively.

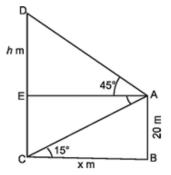


Let 
$$CB = x \text{ m}$$
 and  $DE = h \text{ m}$ .

$$\therefore$$
 AE = CB =  $x$  m

In 
$$\triangle ADE$$
,  $\frac{h}{x} = \tan 45^{\circ} \Rightarrow h = x$ 


In 
$$\triangle ABC$$
,  $\frac{20}{x} = \tan 15^{\circ}$ 


$$\Rightarrow x = \frac{20}{\tan 15^{\circ}} = \frac{20}{0.2679^{\circ}} = 74.64$$

$$\Rightarrow h = 74.64$$

[From (1)]

Hence, height of the monument = (20 + 74.64) m = 94.64 m Ans.





...(1)