

Subject: MATHS

Answer to this Paper must be written on the paper provided separately.

You will not be allowed to write during first 15 minutes.

This time is to be spent in reading the question paper.

The time given at the head of this Paper is the time allowed for writing the answers.

Section A is compulsory. Attempt any four questions from Section B.

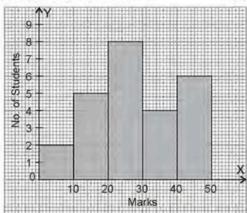
The intended marks for questions or parts of questions are given in brackets [].

SECTION A (40 MARKS)

(Attempt all questions from this Section)

Quentlo	n 1 : Choose the correct a	nawers to the questions from	n the given options:	[15]
(1)	The nominal value of a sh	are:		
20	(a) remains the same		(b) changes from time (to time
	(c) can only be changed l	by the share holder	(d) none of these	
(#1)	Roots of the equation (x -	$1)^2 - 5(x - 1) - 6 = 0$ are:		
	(a) 7, 0	(b) 6, 0	(c) 7, 6	(d) 6, -7
(III)	If $(x-2)$ is a factor of x^2	+5x + p, then the value of p	is:	
	(a) 10	(b) 12	(c) -13	(d) -14
(iv)	The common ratio of the ($\operatorname{GP} \frac{-3}{4}, \frac{1}{2}, \frac{-1}{3}, \frac{2}{9}$ is:		
	(a) $\frac{2}{3}$	(b) $\frac{-2}{3}$	(c) $\frac{3}{2}$	$(4) \frac{-3}{2}$
100	3		2	2
(v)	8th term of the AF 5, 8, 1		37.10	
	(a) 22	(b) 20	(c) 17	(d) 16
(v1)	The reflection of the point	P(0,-1) in the x-exis is:		
	(a) (1, 0)	(b) (-1, 0)	(c) (0, 0)	(d) (0, 1) _E
(vII)	In the figure, BD and CE i	intersect each other at P. APB	C - APDE by :	13/
	(b) SAS similarity			
	(c) SSS similarity			16 20
	(d) RHS similarity			£ /
(viii)	If Himanshu reshaped a co is always correct?	ne of heigh & cm and radius	of base r cm into a cylinder	, then which of the following options
	(a) Volume of cone = Vol(c) Radius of cone = Rad		(b) Surface area of con(d) None of the above	e = Surface area of cylinder
(h)	If $-1 \le 3 + 4x \le 23$, $x \in \mathbb{R}$,	, then :		
	(a) $\{-1 \le x \le 5, x \in \mathbb{R}\}$	(b) $\{-1 \le x \le 5, x \in \mathbb{R}\}$	(c) $\{-2 \le x \le 5, x \in \mathbb{R}\}$	(d) $\{-2 \le x \le 5, x \in \mathbb{R}\}$
(x)	The probability of drawing	a black face card from a dec	ck of 52 playing cards is:	

		4		
(xi) If I	$M = [1, -2], N = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then: The matri	x MN is:	0.00
(a)	[-1	(b) [-4, 3]	(c) [4-3]	(d) 4 -3
			points A(-1, 4) and B(-3, -	
	(-2, -3)	(b) (1, 3)	(c) -2, 1	(d) 2, 1
(xiii)		he centre of the circle. If \angle	∠ABC = 20°, then ∠AOC is equ	al
	to: (a) 20°	(b) 40°	(c) 60°	(d) 10°
(xiv)	기계계계계계 보고 되었네는 것이 모드네 그	f a size transformation, ther (b) reduction	n k > 1 means: (c) identity transformation	
(xv)	The mode of the given of	bservations 5, 3, 2, 7, 5, 9,	3, 8, 5, is:	
	(a) 3	(b) 5	(c) 9	(d) 2
	Amit deposits ₹1600 per maturity, what is the rate	of interest per annum?		unt. If he gets ₹31,080 at the time of [4]
(ii)	If $\frac{x}{h-c} = \frac{y}{c-a} = \frac{z}{a-b}$,	prove that $ax + by + cz =$	0.	[4]
	이 [시작되고 하다. 아이트 아이트 시작되었다.	buying shares of nominal s he buys ives annually		e dividend on the shares is 15% per [4]
Question	or	e gets on instruction.		
(i) A	solid cylinder of radius 7	cm and height 14 cm is n	nelted and recast into solid sphe	res each of radius 3.5 cm. Find the
	umber of spheres formed.		-1 11-1 to the 11 2 1 5	[4]
(iii) V (((Vith the help of a graph pa (a) Plot points A (0, 3), B	aper, taking 1 cm = 1 unit at (2, 3), C (3, 0), D (2, -3) d D on the y axis and nam of B', C' and D'. tine B'D'.		[5]
SECTION	N B			
	any four questions)			
Question 4	1:			
(i) A th	shopkeeper bought an article is article to the customer of a) GST paid by the whole	on the market price printed of saler.	from the wholesaler at a discour on it. If the rate of GST is 6%, t	18 C T T T T T T T T T T T T T T T T T T
	b) Amount paid by the cus		9+	
(ii) F	ind the sum of first 8 terms	s of the GP $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{12}$,	[3] 8 7	


(iii) The histogram alongside represents the scores obtained by 25 students in a Mathematics mental test. Use the data to:

(a) Frame a frequency distribution table.

(b) To calculate mean.

(c) To determine the Modal class.

[4]

Question 5:

(i) Given
$$\begin{bmatrix} 8-2\\1&4 \end{bmatrix} X = \begin{bmatrix} 12\\10 \end{bmatrix}$$
 [3]

Write down

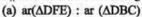
- (a) the order of the matrix X (b) the matrix X.
- (ii) In the map of a rectangular plot of land, the length = 2.5 cm and breadth = 1.4 cm. If the scale is 1:10000, find the area of the plot in m2.
- (iii) Find the value of k if $4x^3 2x^2 + kx + 5$ leaves remainder -10 when divided by 2x + 1. [4]

Question 6:

- (i) Determine whether the line through (-2, 3) and (4, 1) is perpendicular to the line 3x = y + 1. Does the line 3x = y + 1 bisect the line joining (-2, 3) and (4, 1)? [3]
- (ii) Show that $\frac{\tan A + \sin A}{\sin A} = \frac{\sec A + 1}{\sin A}$ [3] tan A - sin A secA -1
- (iii) The first term of an AP is 2 and the last term is 50. If the sum of all these terms is 442, find its common difference.[4]

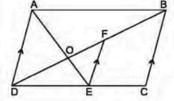
- (i) A box consists of 4 red, 5 black and 6 white balls. One ball is drawn out at random. Find the probability that the ball drawn is:
 - (a) black

- (b) red or white
- (ii) Draw a line segment AB = 3 cm. Draw the locus of a point P which moves at a distance of 5 cm from AB.
- (iii) In the figure, O is the centre of the circumcircle of ∠XYZ. Tangents at X and Y intersect at T. Given ∠XTY = 80° and ∠XOZ = 140°, calculate the value of ∠ZXY.


[3]

Question 8:

- (i) Solve the inequation $2x \frac{5}{2} < x + \frac{3}{2} \le 3x + \frac{11}{2}$, $x \in I$. Represent the solution set on a number line. [3]
- (ii) The mean of the following distribution is 49. Find the missing frequency a.


Class	0-20	20-40	40-60	60-80	80-100
Frequency	15	20	30	а	10

(iii) In the figure, ABCD is a parallelogram. E is the point on CD, AE intersects BD at O. EF \parallel CB. Find the following ratios, if DF: FB = 3:1.

(b) ar(ΔOFE) : ar (ΔODA)

(c) ar(ΔDFE) : ar (trap.EFBC)

Question 9:

(i) An aeroplane travelled a distance of 400 km at an average speed of x km/h. On return journey, the speed was increased by 40 km/h. Write down an expression for the time taken for

(a) the onward journey

(b) the return journey.

If the return journey took 30 minutes less than the onward journey, write down an equation in x and find its value

(ii) The following table shows the distribution of marks in Mathematics:

Marks (less than)	No. of students
10	7
20	28
30	54
40	71
50	84
60	105
70	147
80	180 -

With the help of a graph paper, taking 2 cm = 10 units along one axis and 2 cm = 10 units along the other axis, draw an ogive for the above distribution and use it to find the:

- (a) median.
- (b) number of students who scored distinction marks (75% and above)
- (c) number of students, who passed the examination if pass marks is 35%.

Question 10:

(i) Using properties of proportion, find
$$x:y$$
 if
$$\frac{x^3 + 12x}{6x^2 + 8} = \frac{y^3 + 27y}{9y^2 + 27}$$
 [3]

- (ii) Draw a circle of radius 3 cm. Take a point P outside it. Without using the centre, draw two tangents to the circle from point P.
- (iii) Two poles AB and PQ are standing opposite each other on either side of a road 200 m wide. From a point R between them on the road, the angles of elevation of the top of the poles AB and PQ are 45° and 40° respectively. If height of AB = 80 m, find the height of PQ correct to the nearest metre.

www.yashwantclasses.in

Subject Code: YC MATHS 9

Subject: MATHS

Solution:

- (i) (a)
- (ii) (a) Let x 1 = t, then $t^2 5t 6 = 0$ $\Rightarrow (t - 6) (t + 1) = 0 \Rightarrow t = 6 \text{ or } -1 \Rightarrow x - 1 = 6 \text{ or } x - 1 = -1 \Rightarrow x = 7 \text{ or } x = 0$
- (iii) (d) Since (x 2) is a factor of $x^2 + 5x + p$, so, $2^2 + 5 \times 2 + p = 0 \Rightarrow p = -14$
- (iv) (b) $r = \frac{1}{2} \times \left(-\frac{4}{3}\right) = -\frac{2}{3}$
- (v) (c) Required term = $38 + (8 1) \times (-3) = 17$.
- (vi) (d) $R_x(0, -1) = (0, 1)$
- (vii) (b) Since $\frac{PB}{PD} = \frac{PC}{PE}$ and $\angle BPC = \angle DPE$, so, by SAS similarity axiom, $\triangle PBC \sim \triangle PDE$.
- (viii) (a) After reshaping solids, their volumes remain the same.
- (ix) (a) $-1 \le 3 + 4x$ and 3 + 4x < 23, $x \in \mathbb{R} \Rightarrow -4 \le 4x$ and 4x < 20, $x \in \mathbb{R} \Rightarrow -1 \le x$ and x < 5 \Rightarrow solution set is $\{-1 \le x < 5, x \in \mathbb{R}\}$
- (x) (b) Since, there are 6 black face cards, so, required probability = $\frac{6}{52} = \frac{3}{26}$
- (xi) (c) MN = $\begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 + 2 & 1 4 \end{bmatrix} = \begin{bmatrix} 4 & -3 \end{bmatrix}$
- (xii) (c) Required coordinates are $\left(\frac{-1-3}{2}, \frac{4-2}{2}\right) = (-2, 1)$
- (xiii) (b) $\angle AOC = 2 \times \angle ABC = 40^{\circ}$
- (xiv) (a)
- (xv) (a) Mean of the given data = $\frac{2 \times 9 + 3 \times 4 + 5 \times 6 + p \times 3 + 9 \times 8}{9 + 4 + 6 + 3 + 8}$

$$\Rightarrow 5 = \frac{132 + 3p}{30} \Rightarrow 132 + 3p = 150 \Rightarrow p = \frac{18}{3} = 6.$$

Also, if $\overline{x} = \frac{x_1 + x_2 + \dots x_n}{n}$, then mean of kx_1 , kx_2 , ... kx_n is $k\overline{x}$ not $k + \overline{x}$.

Question 2:

(i) Amit deposits ₹1600 per month in a bank for 18 months in a recurring deposit account. If he gets ₹31,080 at the time of maturity, what is the rate of interest per annum? [4]

(ii) If
$$\frac{x}{b-c} = \frac{y}{c-a} = \frac{z}{a-b}$$
, prove that $ax + by + cz = 0$. [4]

- (iii) A man invests ₹20,020 in buying shares of nominal value ₹26 at 10% premium. The dividend on the shares is 15% per annum. Calculate: [4]
 - (a) the number of shares he buys

- (b) the dividend he receives annually
- (c) the rate of interest he gets on his money.

Solution :

(i) We have, P = ₹1600, n = 18 months

Amount deposited in 18 months = ₹1,600 × 18 = ₹28,800

S.I. =
$$P \times \frac{n(n+1)}{2} \times \frac{1}{12} \times \frac{R}{100} \Rightarrow 2280 = 1600 \times \frac{18 \times 19}{2} \times \frac{1}{12} \times \frac{R}{100} \Rightarrow R = \frac{2280}{4 \times 3 \times 19} = 10$$

Hence, rate of interest = 10% p.a.

(ii) We have,
$$\frac{x}{b-c} = \frac{y}{c-a} = \frac{z}{a-b} = k \implies x = k \ (b-c), \ y = k(c-a), \ z = k(a-b)$$

Now, LHS =
$$ax + by + cz = ak(b - c) + bk (c - a) + ck(a - b)$$

$$= k(ab - ac + bc - ba + ca - bc) = k \times 0 = 0 = RHS$$
 Proved.

Number of shares bought =
$$\frac{20020}{28.60}$$
 = 700 Ans.

(c) Rate of return (or interest) =
$$\frac{2730 \times 100}{20020}$$
 % = 13.64% Ans.

Question 3:

- (i) A solid cylinder of radius 7 cm and height 14 cm is melted and recast into solid spheres each of radius 3.5 cm. Find the number of spheres formed.
- (ii) Find the equation of the line passing through (2, 4) and parallel to the line 3x + 5y 15 = 0. [4]
- (iii) With the help of a graph paper, taking 1 cm = 1 unit along both x and y axis:
 - [5]

.... (1)

- (a) Plot points A (0, 3), B (2, 3), C (3, 0), D (2, -3), E (0, -3)
- (b) Reflect points B, C and D on the y axis and name them as B', C' and D' respectively.
- (c) Write the co-ordinates of B', C' and D'.
- (d) Write the equation of line B'D'.
- (e) Name the figure BCDD'C'B'B

Solution:

(i) We have, r = 7 cm, h = 14 cm, R = 3.5 cm

Let n spheres are formed.

 \therefore Volume of cylinder = $n \times$ volume of a sphere

$$\Rightarrow \pi r^2 h = n \times \frac{4}{3} \pi \mathbb{R}^3 \Rightarrow 7 \times 7 \times 14 = n \times \frac{4}{3} \times (3.5)^3 \Rightarrow n = \frac{7 \times 7 \times 14 \times 3}{4 \times 3.5 \times 3.5 \times 3.5 \times 3.5} = 12$$

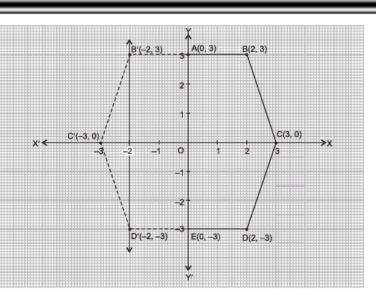
Hence, 12 spheres are formed.

(ii) Let the equation of the line be y = mx + c

: (1) passes through (2, 4)

$$\therefore \qquad 4 = m \times 2 + c \Rightarrow 2m + c = 4 \qquad \dots (2)$$

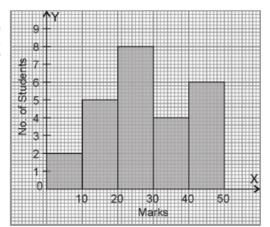
Also, (1) is parallel to the line 3x + 5y = 15 or $y = -\frac{3}{5}x + 3$


 \therefore Gradient m of (1) = $-\frac{3}{5}$

Substituting
$$m = -\frac{3}{5}$$
 in (2), we get $2 \times \left(-\frac{3}{5}\right) + c = 4 \Rightarrow c = 4 + \frac{6}{5} = \frac{26}{5}$

Substituting $m = -\frac{3}{5}$ and $c = \frac{26}{5}$ in (1), we get

$$y = -\frac{3}{5}x + \frac{26}{5} \implies 5y = -3x + 26 \implies 3x + 5y = 26$$
 Ans.


- (iii) (a) The given points have been plotted on the graph paper as shown below.
 - (b) The points B', C' and D' have been shown on the graph paper.

- (c) The coordinates of the points B', C' and D' are respectively (-2, 3), (-3, 0) and (-2, -3) Ans.
- (d) Equation of the line B'D' is x = -2. Ans.
- (e) The figure BCDD'C'B'B is a hexagon. Ans.

Question 4:

- (i) A shopkeeper bought an article with marked price ₹1200 from the wholesaler at a discount of 10%. The shopkeeper sells this article to the customer on the marked price printed on it. If the rate of GST is 6%, then find: [3]
 - (a) GST paid by the wholesaler.
 - (b) Amount paid by the customer to buy the item.
- (ii) Find the sum of first 8 terms of the GP $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{12}$, ... [3]
- (iii) The histogram represents the scores obtained by 25 students in a Mathematics mental test. Use the data to:

- (a) Frame a frequency distribution table.
- (b) To calculate mean.
- (c) To determine the modal class.

Solution:

- (i) SP for wholesaler = 90% of ₹1200 = $\frac{90}{100}$ × ₹1200 = ₹1080 Rate of GST = 6%
 - (a) ∴ GST paid by the wholesaler to the government = 6% of ₹1080 = $\frac{6}{100}$ × ₹1080 = ₹64.80 Ans.
 - (b) Price at which the shopkeeper sold the article = ₹1200 Rate of GST = 6%

∴ Amount paid by the customer = ₹1200 + 6% of ₹1200 = 106% of ₹1200 = $\frac{106}{100}$ × ₹1200 = ₹1272 Ans.

[4]

(ii)
$$a = \frac{1}{3}, r = \frac{1}{6} \times \frac{3}{1} = \frac{1}{2} < 1$$

So, $S_8 = \frac{a(1-r^8)}{(1-r)} = \frac{\frac{1}{3} \left[1 - \left(\frac{1}{2}\right)^8 \right]}{1 - \frac{1}{2}} = \frac{2}{3} \times \left(1 - \frac{1}{256} \right) = \frac{2}{3} \times \frac{255}{256} = \frac{85}{128}$ Ans.

(iii) (a) The frequency distribution table may be prepared as under :

Marks	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50
No. of Students	2	5	8	4	6

(b)

Marks	Mid-value (x)	No. of students (f)	fx
0 – 10	5	2	10
10 – 20	15	5	75
20 – 30	25	8	200
30 – 40	35	4	140
40 – 50	45	6	270
		$\Sigma f = 25$	$\Sigma fx = 695$

Mean =
$$\frac{\Sigma fx}{\Sigma f} = \frac{695}{25} = 27.8$$
 Ans.

(c) Clearly the modal class is 20-30 Ans.

Question 5:

(i) Given
$$\begin{bmatrix} 8-2 \\ 1 & 4 \end{bmatrix} X = \begin{bmatrix} 12 \\ 10 \end{bmatrix}$$
 [3]

Write down

- (a) the order of the matrix X
- (b) the matrix X.
- (ii) In the map of a rectangular plot of land, the length = 2.5 cm and breadth = 1.4 cm. If the scale is 1:10000, find the area of the plot in m^2 .
- (iii) Find the value of 'k' if $4x^3 2x^2 + kx + 5$ leaves remainder -10 when divided by 2x + 1. [4]

Solution:

(i) (a) Let
$$A = \begin{bmatrix} 8 & -2 \\ 1 & 4 \end{bmatrix}$$
. Then, $AX = \begin{bmatrix} 12 \\ 10 \end{bmatrix}$

Since AX exists, we have

Number of rows in X = Number of columns in A = 2

Number of columns in X = Number of columns in AX = 1.

Thus, X has 2 rows and 1 column.

 \therefore The order of X is (2×1) . Ans.

(b) Let,
$$X = \begin{bmatrix} a \\ b \end{bmatrix}$$
. Then

$$\begin{bmatrix} 8 & -2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \end{bmatrix} \qquad \Rightarrow \begin{bmatrix} 8a & -2b \\ a & +4b \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \end{bmatrix}$$

$$\Rightarrow$$
 8a - 2b = 12 and a + 4b = 10

Solving the above two equations, we get, a = 2 and b = 2

Hence,
$$X = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
. Ans.

(ii) Seale factor,
$$k = \frac{1}{10000}$$

Area of the plot = $\frac{1}{k^2}$ × area in the map

$$= (10000)^2 \times 2.5 \times 1.4 \text{ cm}^2 = \frac{(10000)^2 \times 2.5 \times 1.4}{10000} \text{ m}^2 = 35,000 \text{ m}^2 \text{ Ans.}$$

(iii) Let
$$f(x) = 4x^3 - 2x^2 + kx + 5$$

$$2x + 1 = 0 \implies x = -\frac{1}{2}$$

On dividing f(x) by (2x + 1), we get the remainder as $f\left(-\frac{1}{2}\right)$.

$$f\left(-\frac{1}{2}\right) = 4 \times \left(-\frac{1}{2}\right)^3 - 2 \times \left(-\frac{1}{2}\right)^2 + k \times \left(-\frac{1}{2}\right) + 5$$

$$= 4 \times \left(-\frac{1}{8}\right) - 2 \times \frac{1}{4} - \frac{k}{2} + 5 = -\frac{1}{2} - \frac{1}{2} - \frac{k}{2} + 5 = 4 - \frac{k}{2}$$

But,
$$f\left(-\frac{1}{2}\right) = -10$$
 [Given] $\Rightarrow -10 = 4 - \frac{k}{2} \Rightarrow \frac{k}{2} = 14 \Rightarrow k = 28$ Ans.

Question 6:

(i) Determine whether the line through (-2, 3) and (4, 1) is perpendicular to the line 3x = y + 1. Does the line 3x = y + 1 bisect the line joining (-2, 3) and (4, 1)?

(ii) Show that
$$\frac{\tan A + \sin A}{\tan A - \sin A} = \frac{\sec A + 1}{\sec A - 1}.$$
 [3]

(iii) The first term of an AP is 2 and the last term is 50. If the sum of all these terms is 442, find its common difference.

Solution :

(i) Gradient
$$(m_1)$$
 of the line through $(-2, 3)$ and $(4, 1) = \frac{1-3}{4+2} = \frac{-2}{6} = \frac{-1}{3}$
Gradient (m_2) of the line $3x = y + 1$ is 3

$$m_1 \times m_2 = -1$$
, hence the lines are perpendicular.

Coordinates of the mid-point of the line joining (-2, 3) and (4, 1) are
$$\left(\frac{4-2}{2}, \frac{1+3}{2}\right) = (1, 2)$$

Substituting $x = 1$ and $y = 2$ in $3x = y + 1$, we have, $3 = 1 + 2 = 3$

Hence, the line
$$3x = y + 1$$
 bisects the line joining (-2, 3) and (4, 1) **Ans.**

(ii) We have,

$$\frac{\tan A + \sin A}{\tan A - \sin A} = \frac{\sec A + 1}{\sec A - 1}$$

L.H.S. =
$$\frac{\tan A + \sin A}{\tan A - \sin A} = \frac{\frac{\sin A}{\cos A} + \sin A}{\frac{\sin A}{\cos A} - \sin A} = \frac{\sin A\left(\frac{1}{\cos A} + 1\right)}{\sin A\left(\frac{1}{\cos A} - 1\right)} = \frac{\sec A + 1}{\sec A - 1} = \text{R.H.S}$$
 Proved.

(iii) Here,
$$a = 2$$
, $l = 50$ and $S_n = 442$.

Now,
$$S_n = \frac{n}{2}(a+l)$$

$$\Rightarrow$$
 442 = $\frac{n}{2}$ (2 + 50) \Rightarrow $n = \frac{442 \times 2}{52} = 17$

Now,
$$l = a + (n - 1)d$$

$$\Rightarrow$$
 50 = 2 + (17 - 1) \times d \Rightarrow 48 = 16d \Rightarrow d = 3

Hence, common difference of the AP is 3. Ans.

Question 7:

- (i) An aeroplane travelled a distance of 400 km at an average speed of x km/h. On return journey, the speed was increased by 40 km/h. Write down an expression for the time taken for
 - (a) the onward journey

(b) the return journey.

If the return journey took 30 minutes less than the onward journey, write down an equation in x and find its value [5]

(ii) The following table shows the distribution of marks in Mathematics:

Marks (less than)	No. of students
10	7
20	28
30	54
40	71
50	84
60	105
70	147
80	180

With the help of a graph paper, taking 2 cm = 10 units along one axis and 2 cm = 10 units along the other axis, draw an ogive for the above distribution and use it to find the:

- (a) median.
- (b) number of students who scored distinction marks (75% and above)
- (c) number of students, who passed the examination if pass marks is 35%.

[5]

Solution:

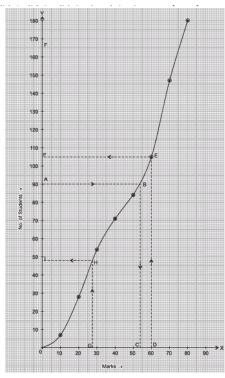
(i) (a) Distance covered = 400 km

Speed =
$$x \text{ km/h}$$

$$\therefore \qquad \text{Time taken} = \frac{400}{x} \text{ hours } \mathbf{Ans.}$$

(b) Distance covered = 400 km; Speed = (x + 40) km/h

$$\therefore \qquad \text{Time taken} = \frac{400}{x + 40} \text{ hours } \mathbf{Ans.}$$


We have,
$$\frac{400}{x} - \frac{400}{x+40} = \frac{30}{60} \Rightarrow \frac{x+40-x}{x(x+40)} = \frac{1}{2\times400} \Rightarrow x^2 + 40x = 32000$$
 Ans.
 $\Rightarrow x^2 + 200x - 160x - 32000 = 0 \Rightarrow x(x+200) - 160(x+200) = 0$
 $\Rightarrow (x+200)(x-160) = 0 \Rightarrow x = -200$ or $x = 160$
Hence, $x = 160$ [Rejecting -ve speed] Ans.

(ii) The cumulative frequency table may be prepared as below :

Marks	Number of students	Cumulative frequency
0–10	7	7
10–20	21	28
20-30	26	54
30–40	17	71

40–50	13	84
50-60	21	105
60–70	42	147
70-80	33	180

Now, we take marks along x-axis and number of students along y-axis. We plot the points (0, 0), (10, 7), (20, 28), (30, 54), (40, 71), (50, 84), (60, 105), (70, 147) and (80, 180). Join these points by a free hand curve to get the ogive.

(a) Here N = 180
$$\Rightarrow \frac{N}{2} = 90$$

On the graph paper take point A on the y-axis, representing 90. Through A, draw a horizontal line meeting the ogive at B. From B, draw BC \perp x-axis, meeting the x-axis at C. The abscissa of C is 54. Hence, median marks = 54. Ans.

(b) Maximum marks = 80

$$\therefore$$
 75% of 80 = $\frac{80 \times 75}{100}$ = 60

From the ogive, we see that number of students who scored less than 75% marks (60 marks) = 105 \therefore No. of students who scored 75% and above = 180 - 105 = 75 Ans.

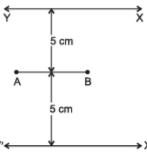
(c) 35% of 80 =
$$\frac{80 \times 35}{100}$$
 = 28

From the ogive, we see that number of students who scored less than 35% marks (28 marks) = 48 \therefore No. of students who passed the examination = 180 - 48 = 132 Ans.

Question 8:

- (i) A box consists of 4 red, 5 black and 6 white balls. One ball is drawn out at random. Find the probability that the ball drawn is:
 - (a) black
 - (b) red or white
- (ii) Draw a line segment AB = 3 cm. Draw the locus of a point P which moves at a distance of 5 cm from AB. [3]
- (iii) In the figure, O is the centre of the circumcircle of ∠XYZ. Tangents at X and Y intersect at T. Given ∠XTY = 80° and ∠XOZ = 140°, calculate the value of ∠ZXY.
 [4]

Solution


- (i) Total no. of balls = 4 + 5 + 6 = 15
 - (a) No. of black balls = 5

P (a black ball) =
$$\frac{\text{no. of black balls}}{\text{total no. of balls}} = \frac{5}{15} = \frac{1}{3}$$
 Ans.

(b) No. of red or white balls = 4 + 6 = 10

P (a red or a white ball) =
$$\frac{\text{no. of red or white balls}}{\text{total no. of balls}} = \frac{10}{15} = \frac{2}{3}$$
 Ans.

(iii) TX and TY are tangents from T

$$\Rightarrow \qquad \angle TYX = \angle TXY = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}$$

Now,
$$\angle XYZ = \frac{1}{2} \angle XOZ$$
 [Angle at the centre is double the angle at the circumference]

$$\Rightarrow \qquad \angle XYZ = \frac{1}{2} \times 140^{\circ} = 70^{\circ}$$

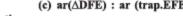
In
$$\Delta XYZ$$
, $\angle ZXY = 180^{\circ} - (\angle XYZ + \angle XZY)$ [Angle sum property of a Δ]

$$\Rightarrow$$
 \angle ZXY= 180° - (70° + 50°) = 180° - 120° = 60° **Ans.**

Question 9:

- (i) Solve the inequation $2x \frac{5}{2} < x + \frac{3}{2} \le 3x + \frac{11}{2}$, $x \in I$. Represent the solution set on a number line. [3]
- The mean of the following distribution is 49. Find the missing frequency a.

Class	0-20	20-40	40-60	60-80	80-100
Frequency	15	20	30	а	10


[3]

(iii) In the figure, ABCD is a parallelogram. E is the point on CD. AE intersects BD at O. EF || CB. Find the following ratios, if DF: FB = 3:1.

(a) $ar(\Delta DFE)$: $ar(\Delta DBC)$

(b) $ar(\triangle OFE)$: $ar(\triangle ODA)$

(c) ar(△DFE) : ar (trap.EFBC)

Solution:

(i) We have,
$$2x - \frac{5}{2} < x + \frac{3}{2} \le 3x + \frac{11}{2}$$
, $x \in I$

$$\Rightarrow 2x - \frac{5}{2} < x + \frac{3}{2} \text{ and } x + \frac{3}{2} \le 3x + \frac{11}{2}, x \in I$$

$$\Rightarrow x < \frac{3}{2} + \frac{5}{2} \text{ and } -2x \le \frac{11}{2} - \frac{3}{2}, x \in I \Rightarrow x < 4 \text{ and } x \ge -2, x \in I$$

$$\therefore \text{ Solution set } = \{x : -2 \le x < 4, x \in I\} = \{-2, -1, 0, 1, 2, 3\}$$

The graph of the solution set is shown below

(ii) We may prepare a table as below:

Class	Mid value (x)	Frequency (f)	$f \times x$
0 - 20	10	15	150
20 - 40	30	20	600
40 - 60	50	30	1500
60 - 80	70	a	70a
80 - 100	90	10	900
		$\sum f = 75 + a$	$\Sigma fx = 3150 + 70a$

Now, Mean =
$$\frac{\Sigma f x}{\Sigma f}$$

 $\Rightarrow 49 = \frac{3150 + 70a}{75 + a} \Rightarrow 3675 + 49a = 3150 + 70a \Rightarrow 21a = 3675 - 3150 \Rightarrow a = \frac{525}{21} = 25$ Ans.

Now, Mean =
$$\frac{\Sigma fx}{\Sigma f}$$

Now, Mean =
$$\frac{\Sigma f x}{\Sigma f}$$

 $\Rightarrow 49 = \frac{3150 + 70a}{75 + a} \Rightarrow 3675 + 49a = 3150 + 70a \Rightarrow 21a = 3675 - 3150 \Rightarrow a = \frac{525}{21} = 25$ Ans.
ii) (a) $\triangle DEF \sim \triangle DCB$ [AA similarity]

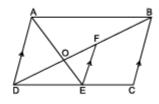
(iii) (a)
$$\Delta DEF \sim \Delta DCB$$
 [AA similarity]

$$\Rightarrow \frac{DF^2}{DB^2} = \frac{\text{area } (\Delta DEF)}{\text{area } (\Delta DBC)}$$

$$= \text{Now, } \frac{FB}{DF} = \frac{1}{3}$$
 [Given]

$$\Rightarrow \frac{FB}{DF} + 1 = \frac{1}{3} + 1 \Rightarrow \frac{FB + DF}{DF} = \frac{1+3}{3} \Rightarrow \frac{DB}{DF} = \frac{4}{3} \Rightarrow \frac{DF}{DB} = \frac{3}{4}$$

Hence,
$$\frac{\text{area }(\Delta \text{DFE})}{\text{area }(\Delta \text{DBC})} = \frac{\text{DF}^2}{\text{DB}^2} = \frac{9}{16}$$
 Ans.


(b)
$$\frac{\text{area} (\Delta \text{OFE})}{\text{area} (\Delta \text{ODA})} = \frac{\text{EF}^2}{\Delta \text{D}^2}$$
 [:: $\Delta \text{OFE} \sim \Delta \text{ODA}$]

(b)
$$\frac{\text{area } (\Delta \text{OFE})}{\text{area } (\Delta \text{ODA})} = \frac{\text{EF}^2}{\text{AD}^2}$$
 [:: $\Delta \text{OFE} \sim \Delta \text{ODA}$]

Now, $\frac{\text{EF}}{\text{AD}} = \frac{\text{EF}}{\text{BC}}$ [:: $\Delta \text{OFE} \sim \Delta \text{ODA}$]

$$= \frac{\text{DF}}{\text{DB}} = \frac{3}{4}$$
 [$\Delta \text{DFE} \sim \Delta \text{DBC}$]

$$\Rightarrow \frac{\text{area } (\Delta \text{OFE})}{\text{area } (\Delta \text{ODA})} = \frac{3^2}{4^2} = \frac{9}{16} \text{ Ans.}$$

(c)
$$\frac{\text{area }(\Delta \text{DFE})}{\text{area }(\Delta \text{DBC})} = \frac{9}{16}$$
 [From (a)]
$$\Rightarrow \frac{\text{area }(\Delta \text{DFE})}{\text{area }(\Delta \text{DBC}) - \text{area }(\Delta \text{DFE})} = \frac{9}{16 - 9}$$
 [Dividendo and invertendo]
$$= \frac{\text{area }\Delta \text{DFE}}{\text{area trap. EFBC}} = \frac{9}{7} \text{ Ans.}$$

Question 10:

(i) Using properties of proportion, find
$$x : y$$
 if $\frac{x^3 + 12x}{6x^2 + 8} = \frac{y^3 + 27y}{9y^2 + 27}$ [3]

- (ii) Draw a circle of radius 3 cm. Take a point P outside it. Without using the centre, draw two tangents to the circle from point P. [3]
- (iii) Two poles AB and PQ are standing opposite each other on either side of a road 200 m wide. From a point R between them on the road, the angles of elevation of the top of the poles AB and PQ are 45° and 40° respectively. If height of AB = 80 m, find the height of PQ correct to the nearest metre.

Solution:

(i) We have,
$$\frac{x^3 + 12x}{6x^2 + 8} = \frac{y^3 + 27y}{9y^2 + 27}$$

Applying componendo and dividendo, we ge

$$\frac{x^3 + 12x + 6x^2 + 8}{x^3 + 12x - 6x^2 - 8} = \frac{y^3 + 27y + 9y^2 + 27}{y^3 + 27y - 9y^2 - 27}$$

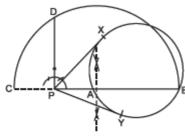
$$\Rightarrow \frac{x^3 + 2^3 + 3 \times x \times 2(x + 2)}{x^3 - 2^3 - 3 \times x \times 2(x - 2)} = \frac{y^3 + 3^3 + 3 \times y \times 3(y + 3)}{y^3 - 3^3 - 3 \times y \times 3(y - 3)}$$

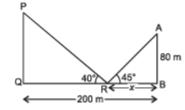
$$\Rightarrow \frac{(x + 2)^3}{(x - 2)^3} = \frac{(y + 3)^3}{(y - 3)^3} \qquad [\because (a + b)^3 = a^3 + b^3 + 3ab(a + b) \text{ and } (a - b)^3 = a^3 - b^3 - 3ab(a - b)]$$

$$\Rightarrow \frac{x + 2}{x - 2} = \frac{y + 3}{y - 3} \Rightarrow \frac{x + 2 + x - 2}{x + 2 - x + 2} = \frac{y + 3 + y - 3}{y + 3 - y + 3} \text{ [Applying componendo and dividendo]}$$

$$\Rightarrow \frac{2x}{4} = \frac{2y}{6} \Rightarrow \frac{x}{2} = \frac{y}{3} \Rightarrow \frac{x}{y} = \frac{2}{3} \Rightarrow x : y = 2 : 3 \text{ Ans.}$$

- (ii) Steps of construction:
 - 1. Draw a circle of radius 3 cm. Take any point P, outside the circle.
 - 2. Draw secant PAB, intersecting the circle at A and B.
 - 3. Extend AP to C to such that AP = PC.
 - 4. Taking BC as diameter, draw a semicircle.
 - 5. At P, draw PD \(\pm \) BC, which cuts the semicircle at D.
 - With P as centre and radius equal to PD, draw two arcs, which cut the circle at X and Y.
 - 7. Join PX and PY to get the required tangents.
- (iii) Let BR = x m.


Then in ΔABR


$$\tan 45^\circ = \frac{AB}{BR} \Rightarrow 1 = \frac{80}{x} \Rightarrow x = 80 \text{ m}$$

$$\therefore$$
 QR = QB - BR = (200 - 80) m = 120 m

In
$$\triangle PQR$$
, $\tan 40^{\circ} = \frac{PQ}{QR} \Rightarrow 0.8390 = \frac{PQ}{120} \Rightarrow PQ = 120 \times 0.8390 = 100.68 \text{ m}$

Hence, height of PQ = 101 m Ans.

