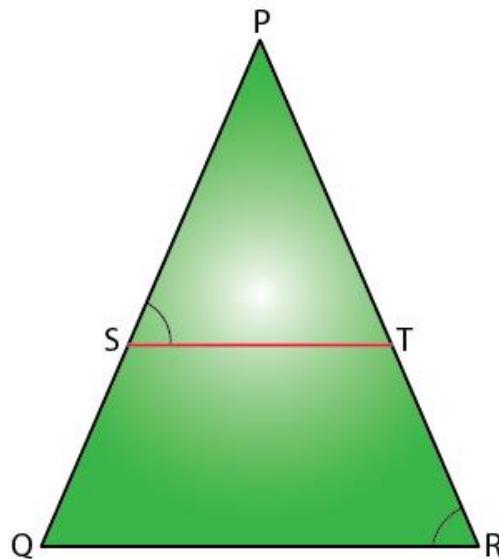


Important Questions & Answers For Class 10 Maths

Chapter 6 Triangles

Q. 1: In the given figure, $PS/SQ = PT/TR$ and $\angle PST = \angle PRQ$. Prove that PQR is an isosceles triangle.



Solution:

Given,

$$PS/SQ = PT/TR$$

We know that if a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

Therefore, $ST // QR$

And $\angle PST = \angle PQR$ (Corresponding angles)(i)

Also, given,

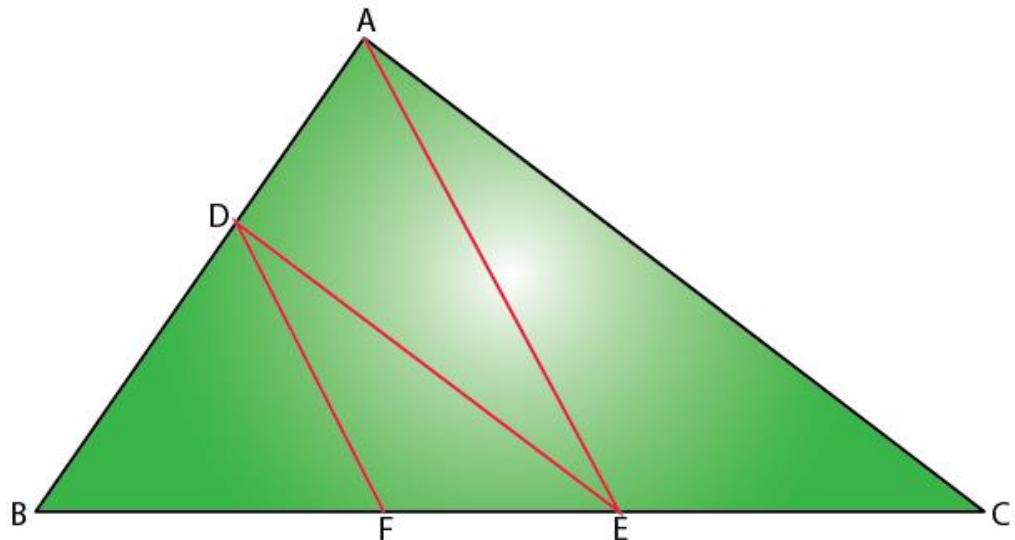
From (i) and (ii),

$$\angle PRQ = \angle PQR$$

Therefore, $PQ = PR$ (sides opposite the equal angles)

Hence, PQR is an isosceles triangle.

Q. 2: In the figure, $DE \parallel AC$ and $DF \parallel AE$. Prove that $BF/FE = BE/EC$.



Solution:

Given that,

In triangle ABC, $DE \parallel AC$.

By Basic Proportionality Theorem,

Also, given that $DF \parallel AE$.

Again by Basic Proportionality Theorem,

From (i) and (ii),

$$BE/EC = BF/FE$$

Hence proved.

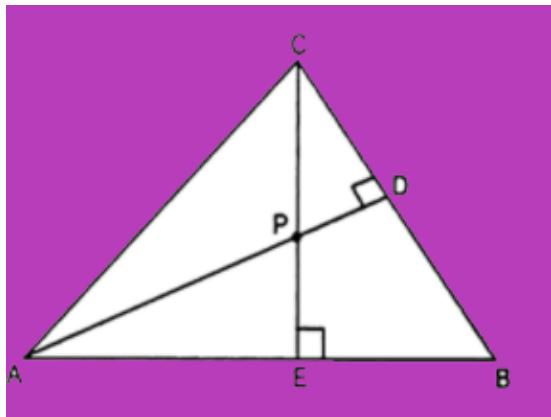
Q. 3: In the given figure, altitudes AD and CE of $\triangle ABC$ intersect each other at the point P. Show that:

(i) $\Delta AEP \sim \Delta CDP$

(ii) $\Delta ABD \sim \Delta CBE$

(iii) $\Delta AEP \sim \Delta ADB$

(iv) $\Delta \text{PDC} \sim \Delta \text{BEC}$



Solution:

Given that AD and CE are the altitudes of triangle ABC and these altitudes intersect each other at P.

(i) In $\triangle AEP$ and $\triangle CDP$,

$$\angle AEP = \angle CDP (90^\circ \text{ each})$$

$$\angle APE = \angle CPD \text{ (Vertically opposite angles)}$$

Hence, by AA similarity criterion,

$$\triangle AEP \sim \triangle CDP$$

(ii) In $\triangle ABD$ and $\triangle CBE$,

$$\angle ADB = \angle CEB (90^\circ \text{ each})$$

$$\angle ABD = \angle CBE \text{ (Common Angles)}$$

Hence, by AA similarity criterion,

$\Delta ABD \sim \Delta CBE$

(iii) In ΔAEP and ΔADB ,

$\angle AEP = \angle ADB$ (90° each)

$\angle PAE = \angle DAB$ (Common Angles)

Hence, by AA similarity criterion,

$\Delta AEP \sim \Delta ADB$

(iv) In ΔPDC and ΔBEC ,

$\angle PDC = \angle BEC$ (90° each)

$\angle PCD = \angle BCE$ (Common angles)

Hence, by AA similarity criterion,

$\Delta PDC \sim \Delta BEC$

Q. 4: A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower

Solution:

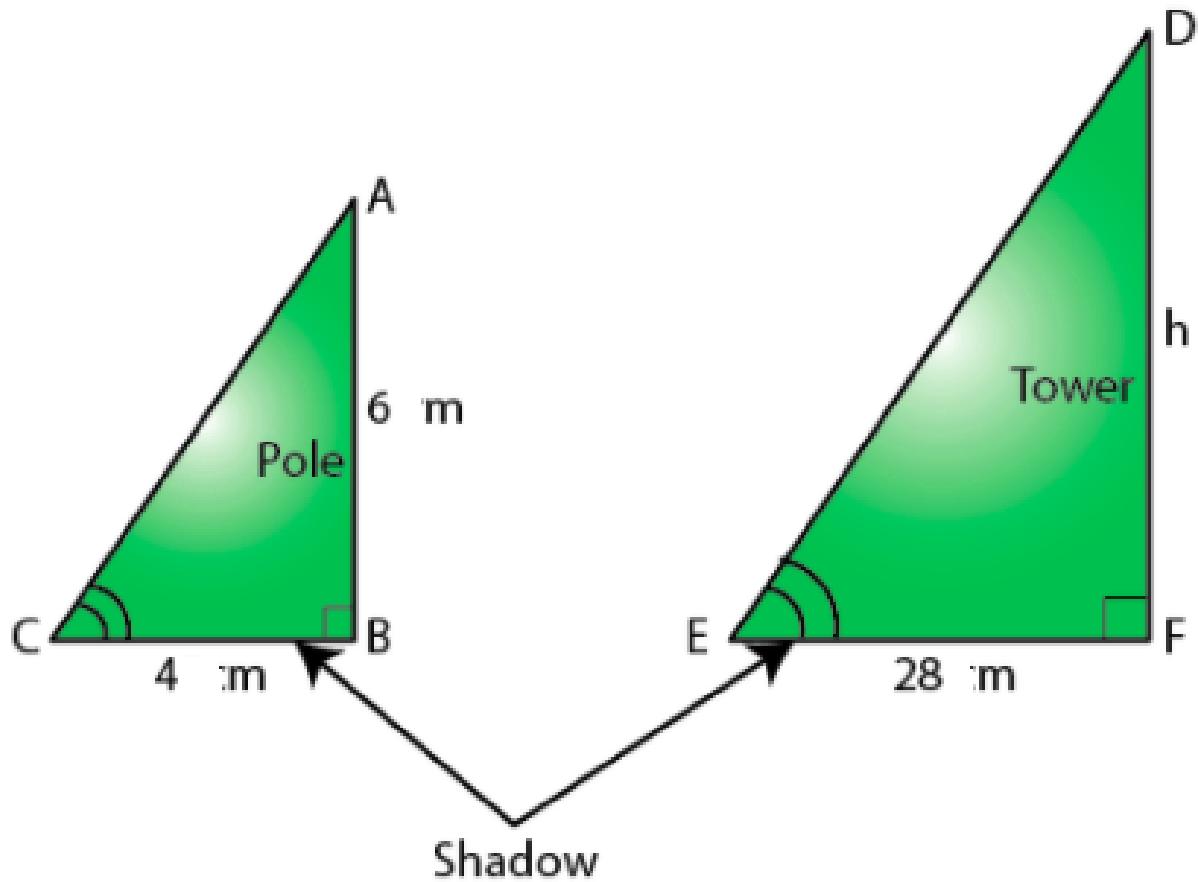
Given,

Length of the vertical pole = 6 m

Shadow of the pole = 4 m

Let the height of the tower be h m.

Length of the shadow of the tower = 28 m



In $\triangle ABC$ and $\triangle DFE$,

$\angle C = \angle E$ (angle of elevation)

$\angle B = \angle F = 90^\circ$

By AA similarity criterion,

$$\Delta ABC \sim \Delta DFE$$

We know that the corresponding sides of two similar triangles are proportional.

$$AB/DF = BC/EF$$

$$6/h = 4/28$$

$$h = (6 \times 28)/4$$

$$h = 6 \times 7$$

$$h = 42$$

Hence, the height of the tower = 42 m.

Q. 5: If $\Delta ABC \sim \Delta QRP$, $\text{ar}(\Delta ABC) / \text{ar}(\Delta PQR) = 9/4$, $AB = 18 \text{ cm}$ and $BC = 15 \text{ cm}$, then find PR.

Solution:

Given that $\Delta ABC \sim \Delta QRP$.

$$\text{ar}(\Delta ABC) / \text{ar}(\Delta QRP) = 9/4$$

$$AB = 18 \text{ cm} \text{ and } BC = 15 \text{ cm}$$

We know that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

$$\text{ar}(\Delta ABC) / \text{ar}(\Delta QRP) = BC^2/PR^2$$

$$9/4 = (15)^2/RP^2$$

$$RP^2 = (4/9) \times 225$$

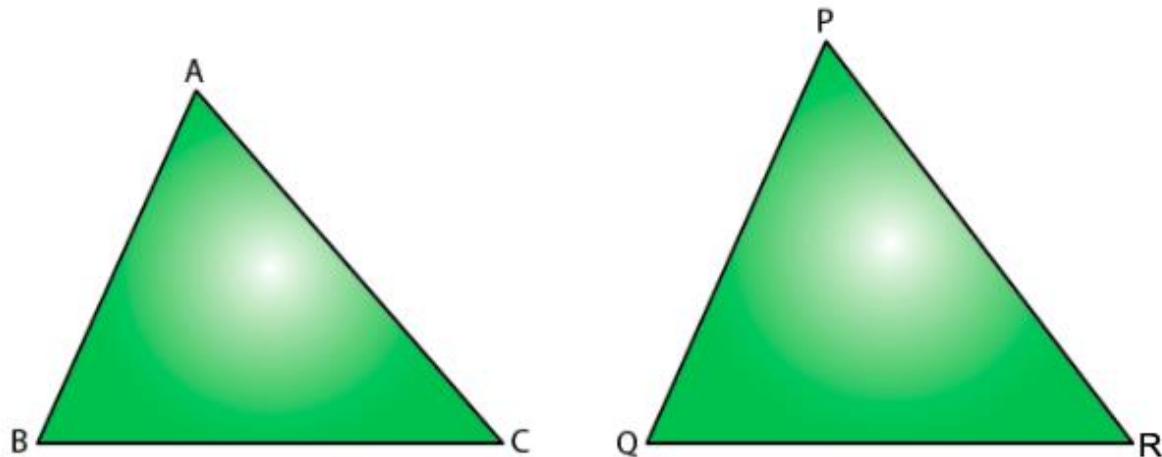
$$PR^2 = 100$$

Therefore, $PR = 10$ cm

Q. 6: If the areas of two similar triangles are equal, prove that they are congruent.

Solution:

Let ΔABC and ΔPQR be the two similar triangles with equal area.



To prove $\Delta ABC \cong \Delta PQR$.

Proof:

$$\Delta ABC \sim \Delta PQR$$

$$\therefore \text{Area of } (\Delta ABC) / \text{Area of } (\Delta PQR) = BC^2 / QR^2 = AB^2 / PQ^2 = AC^2 / PR^2$$

$$\Rightarrow BC^2 / QR^2 = AB^2 / PQ^2 = AC^2 / PR^2 = 1 \text{ [Since, } \text{ar } (\Delta ABC) = \text{ar } (\Delta PQR) \text{]} \Rightarrow BC^2 / QR^2 = 1$$

$$\Rightarrow AB^2 / PQ^2 = 1$$

$$\Rightarrow AC^2 / PR^2 = 1$$

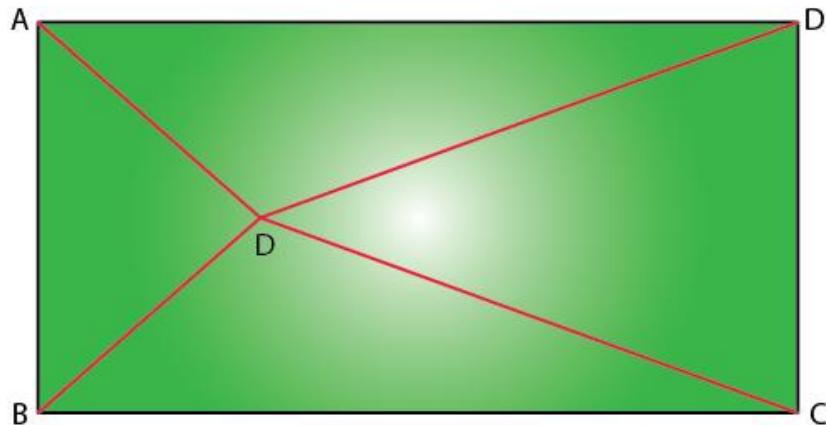
$$BC = QR$$

$$AB = PQ$$

$$AC = PR$$

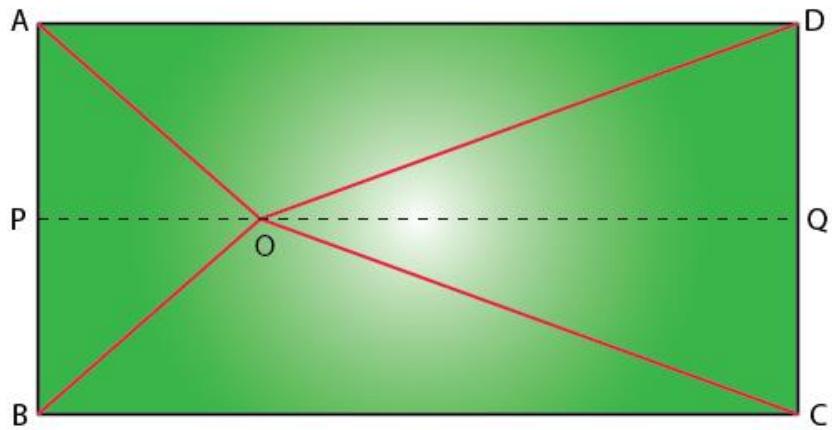
Therefore, $\Delta ABC \cong \Delta PQR$ [SSS criterion of congruence]

Q. 7: O is any point inside a rectangle ABCD as shown in the figure. Prove that $OB^2 + OD^2 = OA^2 + OC^2$.



Solution:

Through O, draw PQ \parallel BC so that P lies on AB and Q lies on DC.



$$PQ \parallel BC$$

Therefore, $PQ \perp AB$ and $PQ \perp DC$ ($\angle B = 90^\circ$ and $\angle C = 90^\circ$)

So, $\angle BPQ = 90^\circ$ and $\angle CQP = 90^\circ$

Hence, $BPQC$ and $APQD$ are both rectangles.

By Pythagoras theorem,

In $\triangle OPB$,

$$OB^2 = BP^2 + OP^2 \dots\dots (1)$$

Similarly,

In $\triangle OQD$,

$$OD^2 = OQ^2 + DQ^2 \dots\dots (2)$$

In $\triangle OQC$,

$$OC^2 = OQ^2 + CQ^2 \dots\dots (3)$$

In $\triangle OAP$,

$$OA^2 = AP^2 + OP^2 \dots\dots (4)$$

Adding (1) and (2),

$$OB^2 + OD^2 = BP^2 + OP^2 + OQ^2 + DQ^2$$

$$= CQ^2 + OP^2 + OQ^2 + AP^2$$

(since $BP = CQ$ and $DQ = AP$)

$$= CQ^2 + OQ^2 + OP^2 + AP^2$$

$$= OC^2 + OA^2 \text{ [From (3) and (4)]}$$

Hence proved that $OB^2 + OD^2 = OA^2 + OC^2$.

Q. 8: Sides of triangles are given below. Determine which of them are right triangles.

In case of a right triangle, write the length of its hypotenuse.

(i) 7 cm, 24 cm, 25 cm

(ii) 3 cm, 8 cm, 6 cm

Solution:

(i) Given, sides of the triangle are 7 cm, 24 cm, and 25 cm.

Squaring the lengths of the sides of the, we will get 49, 576, and 625.

$$49 + 576 = 625$$

$$(7)^2 + (24)^2 = (25)^2$$

Therefore, the above equation satisfies the Pythagoras theorem. Hence, it is a right-angled triangle.

Length of Hypotenuse = 25 cm

(ii) Given, sides of the triangle are 3 cm, 8 cm, and 6 cm.

Squaring the lengths of these sides, we will get 9, 64, and 36.

Clearly, $9 + 36 \neq 64$

Or, $3^2 + 6^2 \neq 8^2$

Therefore, the sum of the squares of the lengths of two sides is not equal to the square of the length of the hypotenuse.

Hence, the given triangle does not satisfy the Pythagoras theorem.

Q.9: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio.

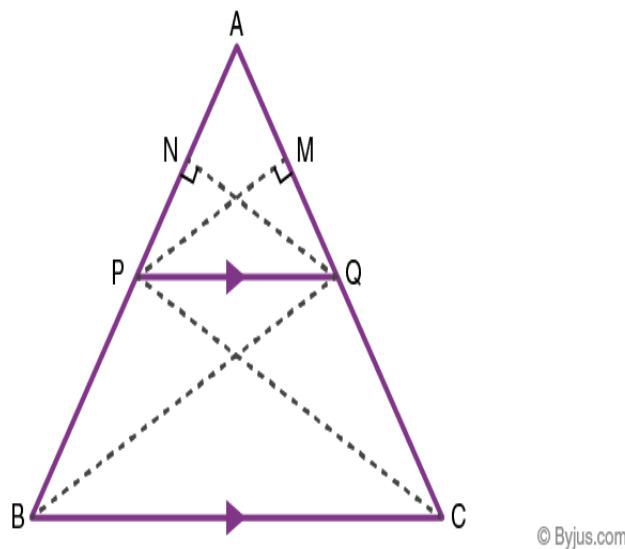
Solution:

Consider a triangle ΔABC and draw a line PQ parallel to the side BC of ΔABC and intersect the sides AB and AC in P and Q , respectively.

To prove: $AP/PB = AQ/QC$

Construction:

Join the vertex B of ΔABC to Q and the vertex C to P to form the lines BQ and CP and then drop a perpendicular QN to the side AB and draw $PM \perp AC$ as shown in the given figure.



© Byjus.com

Proof:

Now the area of $\Delta APQ = 1/2 \times AP \times QN$ (since, area of a triangle = $1/2 \times$ Base \times Height)

Similarly, area of $\Delta PBQ = 1/2 \times PB \times QN$

area of $\Delta APQ = 1/2 \times AQ \times PM$

Also, area of $\triangle QCP = 1/2 \times QC \times PM$ (1)

Now, if we find the ratio of the area of triangles $\triangle APQ$ and $\triangle PBQ$, we have

According to the property of triangles, the triangles drawn between the same parallel lines and on the same base have equal areas.

Therefore, we can say that $\triangle PBQ$ and $\triangle QCP$ have the same area.

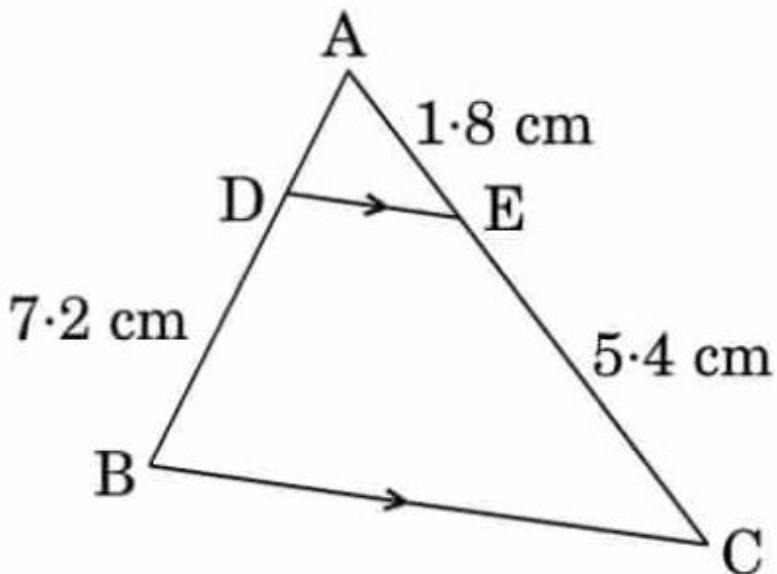
area of $\triangle PBQ$ = area of $\triangle QCP$ (3)

Therefore, from the equations (1), (2) and (3), we can say that,

$$AP/PB = AQ/QC$$

Q.10: In the figure, $DE \parallel BC$. Find the length of side AD , given that $AE = 1.8 \text{ cm}$,

$BD = 7.2 \text{ cm}$ and $CE = 5.4 \text{ cm}$.



Solution:

Given,

$$DE \parallel BC$$

$$AE = 1.8 \text{ cm}, BD = 7.2 \text{ cm} \text{ and } CE = 5.4 \text{ cm}$$

By basic proportionality theorem,

$$AD/DB = AE/EC$$

$$AD/7.2 = 1.8/5.4$$

$$AD = (1.8 \times 7.2)/5.4$$

$$= 7.2/4$$

$$= 2.4$$

Therefore, $AD = 2.4 \text{ cm.}$

Q.11: Given $\Delta ABC \sim \Delta PQR$, if $AB/PQ = 1/3$, then find $(\text{ar } \Delta ABC)/(\text{ar } \Delta PQR)$.

Solution:

Given,

$$\Delta ABC \sim \Delta PQR$$

And

$$AB/PQ = 1/3,$$

We know that The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

$$(\text{ar } \triangle ABC) / (\text{ar } \triangle PQR) = AB^2 / PQ^2 = (AB/PQ)^2 = (1/3)^2 = 1/9$$

$$\text{Therefore, } (\text{ar } \triangle ABC) / (\text{ar } \triangle PQR) = 1/9$$

Or

$$(\text{ar } \triangle ABC) : (\text{ar } \triangle PQR) = 1 : 9$$

Q.12: The sides of two similar triangles are in the ratio 7 : 10. Find the ratio of areas of these triangles.

Solution:

Given,

The ratio of sides of two similar triangles = 7 : 10

We know that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

The ratio of areas of these triangles = (Ratio of sides of two similar triangles)²

$$= (7)^2 : (10)^2$$

$$= 49 : 100$$

Therefore, the ratio of areas of the given similar triangles is 49 : 100.

Q.13: In an equilateral ΔABC , D is a point on side BC such that $BD = \left(\frac{1}{3}\right) BC$.

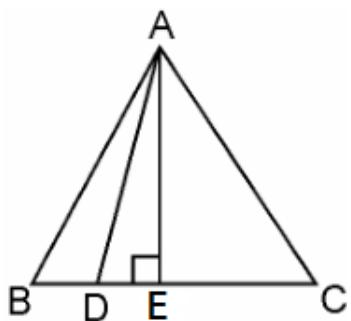
Prove that $9(AD)^2 = 7(AB)^2$.

Solution:

Given, ABC is an equilateral triangle.

And D is a point on side BC such that $BD = \left(\frac{1}{3}\right) BC$.

Let a be the side of the equilateral triangle and AE be the altitude of ΔABC .



$$\therefore BE = EC = BC/2 = a/2$$

$$\text{And, } AE = a\sqrt{3}/2$$

$$\text{Given, } BD = 1/3 BC$$

$$\therefore BD = a/3$$

$$DE = BE - BD = a/2 - a/3 = a/6$$

In ΔADE , by Pythagoras theorem,

$$AD^2 = AE^2 + DE^2$$

$$= [(a\sqrt{3}/2)^2 + (a/6)^2]$$

$$= (3a^2/4) + (a^2/36)$$

$$= (37a^2/36)$$

$$= (28a^2/36)$$

$$= (7/9)a^2$$

$$= (7/9)(AB)^2$$

Therefore, $9(AD)^2 = 7(AB)^2$.

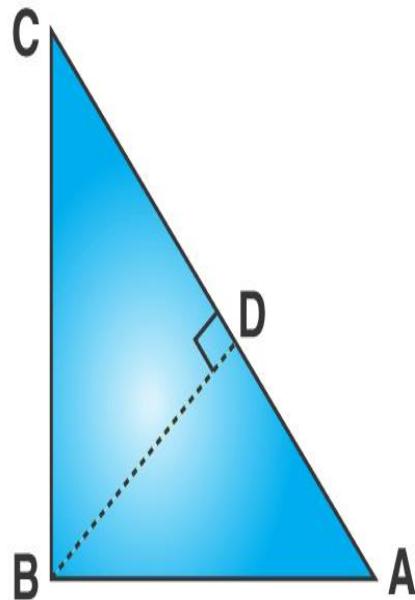
Q.14: Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Solution:

Given: A right-angled triangle ABC, right-angled at B.

To Prove: $AC^2 = AB^2 + BC^2$

Construction: Draw a perpendicular BD meeting AC at D.



© Byjus.com

Proof:

In $\triangle ABC$ and $\triangle ADB$,

$$\angle ABC = \angle ADB = 90^\circ$$

$$\angle A = \angle A \rightarrow \text{common}$$

Using the AA criterion for the similarity of triangles,

$$\triangle ABC \sim \triangle ADB$$

$$\text{Therefore, } AD/AB = AB/AC$$

$$\Rightarrow AB^2 = AC \times AD \dots\dots(1)$$

Considering $\triangle ABC$ and $\triangle BDC$ from the figure.

$C = \angle C \rightarrow \text{common}$

$\angle CDB = \angle ABC = 90^\circ$

Using the Angle Angle(AA) criterion for the similarity of triangles, we conclude that,

$\Delta BDC \sim \Delta ABC$

Therefore, $CD/BC = BC/AC$

$\Rightarrow BC^2 = AC \times CD \dots\dots(2)$

By adding equation (1) and equation (2), we get:

$$AB^2 + BC^2 = (AC \times AD) + (AC \times CD)$$

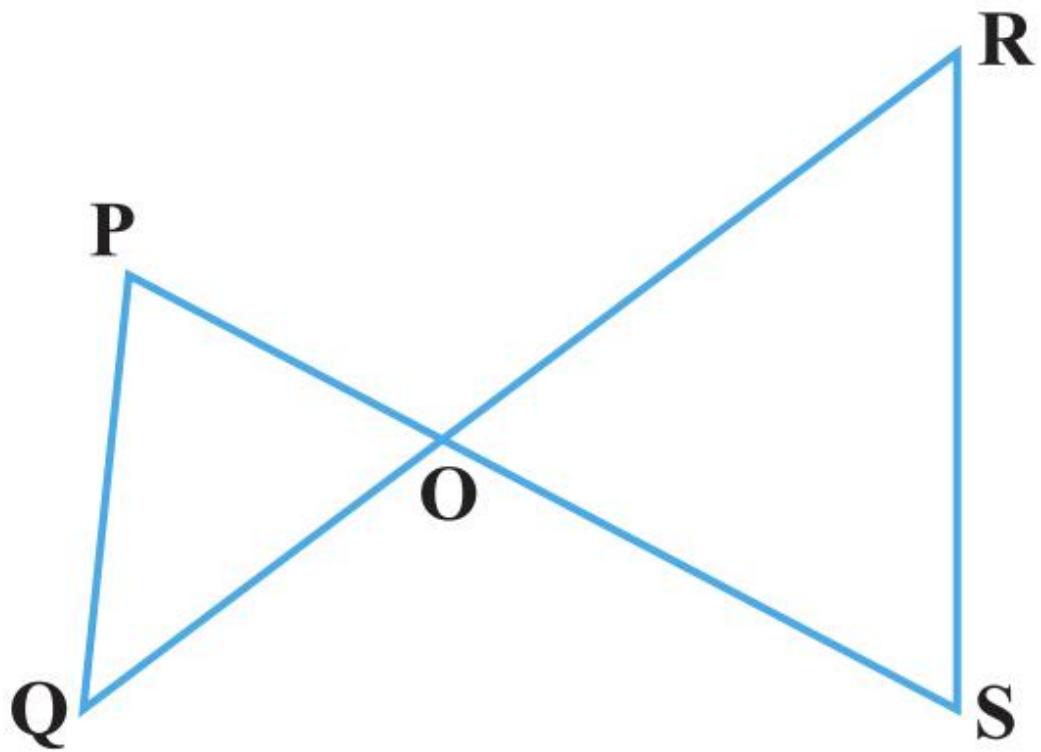
$$AB^2 + BC^2 = AC (AD + CD) \dots\dots(3)$$

$$AB^2 + BC^2 = AC (AC) \{ \text{since } AD + CD = AC \}$$

$$AB^2 + BC^2 = AC^2$$

Hence proved.

Q.15: In the figure, if $PQ \parallel RS$, prove that $\Delta POQ \sim \Delta SOR$.



Solution:

Given,

$$PQ \parallel RS$$

$$\angle P = \angle S \text{ (Alternate angles)}$$

$$\text{and } \angle Q = \angle R$$

$$\text{Also, } \angle POQ = \angle SOR \text{ (Vertically opposite angles)}$$

Therefore, $\triangle POQ \sim \triangle SOR$ (by AAA similarity criterion)

Hence proved.

