

Important Questions with Solutions for Quadratic Equations

Let us solve some of the questions which are important with respect to the class 10th Maths board exam here.

Q.1: Represent the following situations in the form of quadratic equations:

(i) The area of a rectangular plot is 528 m^2 . The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.

(ii) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. What is the speed of the train?

Solution:

(i) Let us consider,

The breadth of the rectangular plot is $x \text{ m}$.

Thus, the length of the plot = $(2x + 1) \text{ m}$

As we know,

Area of rectangle = length \times breadth = 528 m^2

Putting the value of length and breadth of the plot in the formula, we get,

$$(2x + 1) \times x = 528$$

$$\Rightarrow 2x^2 + x = 528$$

$$\Rightarrow 2x^2 + x - 528 = 0$$

Hence, $2x^2 + x - 528 = 0$, is the required equation which represents the given situation.

(ii) Let us consider,

$$\text{speed of train} = x \text{ km/h}$$

And

$$\text{Time taken to travel } 480 \text{ km} = 480 \text{ (x) km/h}$$

$$\text{As per second situation, the speed of train} = (x - 8) \text{ km/h}$$

As given, the train will take 3 hours more to cover the same distance.

$$\text{Therefore, time taken to travel } 480 \text{ km} = (480/x) + 3 \text{ km/h}$$

As we know,

$$\text{Speed} \times \text{Time} = \text{Distance}$$

Therefore,

$$(x - 8)[(480/x) + 3] = 480$$

$$\Rightarrow 480 + 3x - (3840/x) - 24 = 480$$

$$\Rightarrow 3x - (3840/x) = 24$$

$$\Rightarrow 3x^2 - 24x - 3840 = 0$$

$$\Rightarrow x^2 - 8x - 1280 = 0$$

Hence, $x^2 - 8x - 1280 = 0$ is the required representation of the problem mathematically.

Q.2: Find the roots of quadratic equations by factorisation:

(i) $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$

(ii) $100x^2 - 20x + 1 = 0$

Solution:

(i) $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$

Considering the L.H.S. first,

$$\Rightarrow \sqrt{2}x^2 + 5x + 2x + 5\sqrt{2}$$

$$\Rightarrow x(\sqrt{2}x + 5) + \sqrt{2}(\sqrt{2}x + 5) = (\sqrt{2}x + 5)(x + \sqrt{2})$$

The roots of this equation, $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$ are the values of x for which $(\sqrt{2}x + 5)(x + \sqrt{2}) = 0$

Therefore, $\sqrt{2}x + 5 = 0$ or $x + \sqrt{2} = 0$

$$\Rightarrow x = -5/\sqrt{2} \text{ or } x = -\sqrt{2}$$

(ii) Given, $100x^2 - 20x + 1 = 0$

Considering the L.H.S. first,

$$\Rightarrow 100x^2 - 10x - 10x + 1$$

$$\Rightarrow 10x(10x - 1) - 1(10x - 1)$$

$$\Rightarrow (10x - 1)^2$$

The roots of this equation, $100x^2 - 20x + 1 = 0$, are the values of x for which $(10x - 1)^2 = 0$

Therefore,

$$(10x - 1) = 0$$

$$\text{or } (10x - 1) = 0$$

$$\Rightarrow x = 1/10 \text{ or } x = 1/10$$

Q.3: Find two consecutive positive integers, the sum of whose squares is 365.

Solution:

Let us say, the two consecutive positive integers be x and $x + 1$.

Therefore, as per the given statement,

$$x^2 + (x + 1)^2 = 365$$

$$\Rightarrow x^2 + x^2 + 1 + 2x = 365$$

$$\Rightarrow 2x^2 + 2x - 364 = 0$$

$$\Rightarrow x^2 + x - 182 = 0$$

$$\Rightarrow x^2 + 14x - 13x - 182 = 0$$

$$\Rightarrow x(x + 14) - 13(x + 14) = 0$$

$$\Rightarrow (x + 14)(x - 13) = 0$$

Thus, either, $x + 14 = 0$ or $x - 13 = 0$,

$$\Rightarrow x = -14 \text{ or } x = 13$$

since, the integers are positive, so x can be 13, only.

So, $x + 1 = 13 + 1 = 14$

Therefore, the two consecutive positive integers will be 13 and 14.

Q.4: Find the roots of the following quadratic equations, if they exist, by the method of completing the square:

(i) $2x^2 - 7x + 3 = 0$

(ii) $2x^2 + x - 4 = 0$

Solution:

(i) $2x^2 - 7x + 3 = 0$

$$\Rightarrow 2x^2 - 7x = -3$$

Dividing by 2 on both sides, we get

$$\Rightarrow x^2 - \frac{7x}{2} = -\frac{3}{2}$$

$$\Rightarrow x^2 - 2 \times x \times \frac{7}{4} = -\frac{3}{2}$$

On adding $(7/4)^2$ to both sides of above equation, we get

$$\Rightarrow (x)^2 - 2 \times x \times \frac{7}{4} + (7/4)^2 = (7/4)^2 - (3/2)$$

$$\Rightarrow (x - 7/4)^2 = (49/16) - (3/2)$$

$$\Rightarrow (x - 7/4)^2 = 25/16$$

$$\Rightarrow (x - 7/4) = \pm 5/4$$

$$\Rightarrow x = 7/4 \pm 5/4$$

$$\Rightarrow x = 7/4 + 5/4 \text{ or } x = 7/4 - 5/4$$

$$\Rightarrow x = 12/4 \text{ or } x = 2/4$$

$$\Rightarrow x = 3 \text{ or } 1/2$$

$$(ii) 2x^2 + x - 4 = 0$$

$$\Rightarrow 2x^2 + x = 4$$

Dividing both sides of the above equation by 2, we get

$$\Rightarrow x^2 + x/2 = 2$$

$$\Rightarrow (x)^2 + 2 \times x \times 1/4 = 2$$

Now on adding $(1/4)^2$ to both sides of the equation, we get,

$$\Rightarrow (x)^2 + 2 \times x \times 1/4 + (1/4)^2 = 2 + (1/4)^2$$

$$\Rightarrow (x + 1/4)^2 = 33/16$$

$$\Rightarrow x + 1/4 = \pm \sqrt{33}/4$$

$$\Rightarrow x = \pm \sqrt{33}/4 - 1/4$$

$$\Rightarrow x = \pm \sqrt{33} - 1/4$$

Therefore, either $x = \sqrt{33} - 1/4$ or $x = -\sqrt{33} - 1/4$.

Q.5: The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.

Solution:

Let us say, the shorter side of the rectangle be x m.

Then, larger side of the rectangle = $(x + 30)$ m

Diagonal of the rectangle = $\sqrt{x^2 + (x+30)^2}$ As given, the length of the diagonal is = $x + 60$ m

$$\Rightarrow x^2 + (x + 30)^2 = (x + 60)^2$$

$$\Rightarrow x^2 + x^2 + 900 + 60x = x^2 + 3600 + 120x$$

$$\Rightarrow x^2 - 60x - 2700 = 0$$

$$\Rightarrow x^2 - 90x + 30x - 2700 = 0$$

$$\Rightarrow x(x - 90) + 30(x - 90)$$

$$\Rightarrow (x - 90)(x + 30) = 0$$

$$\Rightarrow x = 90, -30$$

Q.6 : Solve the quadratic equation $2x^2 - 7x + 3 = 0$ by using quadratic formula.

Solution:

$$2x^2 - 7x + 3 = 0$$

On comparing the given equation with $ax^2 + bx + c = 0$, we get,

$$a = 2, b = -7 \text{ and } c = 3$$

By using quadratic formula, we get,

$$x = [-b \pm \sqrt{(b^2 - 4ac)}]/2a$$

$$\Rightarrow x = [7 \pm \sqrt{(49 - 24)}]/4$$

$$\Rightarrow x = [7 \pm \sqrt{25}]/4$$

$$\Rightarrow x = [7 \pm 5]/4$$

Therefore,

$$\Rightarrow x = 7+5/4 \text{ or } x = 7-5/4$$

$$\Rightarrow x = 12/4 \text{ or } 2/4$$

$$\therefore x = 3 \text{ or } \frac{1}{2}$$

Q.7: The sum of the areas of two squares is 468 m^2 . If the difference of their perimeters is 24 m , find the sides of the two squares.

Solution:

Sum of the areas of two squares is 468 m^2 .

$$\therefore x^2 + y^2 = 468 \dots \dots \dots (1) \quad [\because \text{area of square} = \text{side}^2]$$

→ The difference of their perimeters is 24 m .

$$\therefore 4x - 4y = 24 \quad [\because \text{Perimeter of square} = 4 \times \text{side}] \Rightarrow 4(x - y) = 24$$

$$\Rightarrow x - y = 24/4$$

$$\Rightarrow x - y = 6$$

$$\therefore y = x - 6 \dots \dots \dots (2)$$

From equation (1) and (2),

$$\therefore x^2 + (x - 6)^2 = 468$$

$$\Rightarrow x^2 + x^2 - 12x + 36 = 468$$

$$\Rightarrow 2x^2 - 12x + 36 - 468 = 0$$

$$\Rightarrow 2x^2 - 12x - 432 = 0$$

$$\Rightarrow 2(x^2 - 6x - 216) = 0$$

$$\Rightarrow x^2 - 6x - 216 = 0$$

$$\Rightarrow x^2 - 18x + 12x - 216 = 0$$

$$\Rightarrow x(x - 18) + 12(x - 18) = 0$$

$$\Rightarrow (x + 12)(x - 18) = 0$$

$$\Rightarrow x + 12 = 0 \text{ and } x - 18 = 0$$

$$\Rightarrow x = -12 \text{ [rejected] and } x = 18$$

$$\therefore x = 18 \text{ m}$$

Put the value of 'x' in equation (2),

$$\therefore y = x - 6$$

$$\Rightarrow y = 18 - 6$$

$$\therefore y = 12 \text{ m}$$

Hence, sides of two squares are 18m and 12m respectively.

Q.8: Find the values of k for each of the following quadratic equations, so that they have two equal roots.

(i) $2x^2 + kx + 3 = 0$

(ii) $kx(x - 2) + 6 = 0$

Solution:

(i) $2x^2 + kx + 3 = 0$

Comparing the given equation with $ax^2 + bx + c = 0$, we get,

$$a = 2, b = k \text{ and } c = 3$$

As we know, Discriminant = $b^2 - 4ac$

$$= (k)^2 - 4(2)(3)$$

$$= k^2 - 24$$

For equal roots, we know,

Discriminant = 0

$$k^2 - 24 = 0$$

$$k^2 = 24$$

$$k = \pm\sqrt{24} = \pm 2\sqrt{6}$$

(ii) $kx(x - 2) + 6 = 0$

or $kx^2 - 2kx + 6 = 0$

Comparing the given equation with $ax^2 + bx + c = 0$, we get

$$a = k, b = -2k \text{ and } c = 6$$

We know, Discriminant = $b^2 - 4ac$

$$= (-2k)^2 - 4(k)(6)$$

$$= 4k^2 - 24k$$

For equal roots, we know,

$$b^2 - 4ac = 0$$

$$4k^2 - 24k = 0$$

$$4k(k - 6) = 0$$

Either $4k = 0$ or $k - 6 = 0$

$$k = 0 \text{ or } k = 6$$

However, if $k = 0$, then the equation will not have the terms ' x^2 ' and ' x '.

Therefore, if this equation has two equal roots, k should be 6 only.

Q.9: Is it possible to design a rectangular park of perimeter 80 and area 400 sq.m.? If so find its length and breadth.

Solution:

Let the length and breadth of the park be L and B .

Perimeter of the rectangular park = $2(L + B) = 80$

So, $L + B = 40$

Or, $B = 40 - L$

Area of the rectangular park = $L \times B = L(40 - L) = 40L - L^2 = 400$

$L^2 - 40L + 400 = 0$,

which is a quadratic equation.

Comparing the equation with $ax^2 + bx + c = 0$, we get

$a = 1, b = -40, c = 400$

Since, Discriminant = $b^2 - 4ac$

$$\Rightarrow (-40)^2 - 4 \times 400$$

$$\Rightarrow 1600 - 1600$$

$$= 0$$

Thus, $b^2 - 4ac = 0$

Therefore, this equation has equal real roots. Hence, the situation is possible.

Root of the equation,

$$L = -b/2a$$

$$L = (40)/2(1) = 40/2 = 20$$

Therefore, length of rectangular park, $L = 20$ m

And breadth of the park, $B = 40 - L = 40 - 20 = 20$ m.

Q.10: Find the discriminant of the equation $3x^2 - 2x + 1/3 = 0$ and hence find the nature of its roots. Find them, if they are real.

Solution:

Given,

$$3x^2 - 2x + 1/3 = 0$$

Here, $a = 3$, $b = -2$ and $c = 1/3$

Since, Discriminant = $b^2 - 4ac$

$$= (-2)^2 - 4 \times 3 \times 1/3$$

$$= 4 - 4 = 0.$$

Hence, the given quadratic equation has two equal real roots.

The roots are $-b/2a$ and $-b/2a$.

2/6 and 2/6

or

1/3, 1/3

Q.11: In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced by 200 km/hr and the time of flight increased by 30 minutes. Find the original duration of the flight.

Solution:

Let the duration of the flight be x hours.

According to the given,

$$(600/x) - [600/(x + 1/2)] = 200$$

$$(600/x) - [1200/(2x + 1)] = 200$$

$$[600(2x + 1) - 1200x]/[x(2x + 1)] = 200$$

$$(1200x + 600 - 1200x)/[x(2x + 1)] = 200$$

$$600 = 200x(2x + 1)$$

$$x(2x + 1) = 3$$

$$2x^2 + x - 3 = 0$$

$$2x^2 + 3x - 2x - 3 = 0$$

$$x(2x + 3) - 1(2x + 3) = 0$$

$$(2x + 3)(x - 1) = 0$$

$$2x + 3 = 0, x - 1 = 0$$

$$x = -3/2, x = 1$$

Time cannot be negative.

Therefore, $x = 1$

Hence, the original duration of the flight is 1 hr.

Q.12: If $x = 3$ is one root of the quadratic equation $x^2 - 2kx - 6 = 0$, then find the value of k .

Solution:

Given that $x = 3$ is one root of the quadratic equation $x^2 - 2kx - 6 = 0$.

$$\Rightarrow (3)^2 - 2k(3) - 6 = 0$$

$$\Rightarrow 9 - 6k - 6 = 0$$

$$\Rightarrow 3 - 6k = 0$$

$$\Rightarrow 6k = 3$$

$$\Rightarrow k = 1/2$$

Therefore, the value of k is $1/2$.

Q.13: Find the value of p, for which one root of the quadratic equation $px^2 - 14x + 8 = 0$ is 6 times the other.

Solution:

Given quadratic equation is:

$$px^2 - 14x + 8 = 0$$

Let α and 6α be the roots of the given quadratic equation.

Sum of the roots = -coefficient of x /coefficient of x^2

$$\alpha + 6\alpha = -(-14)/p$$

$$7\alpha = 14/p$$

$$\alpha = 2/p \dots (i)$$

Product of roots = constant term/coefficient of x^2

$$(\alpha)(6\alpha) = 8/p$$

$$6\alpha^2 = 8/p$$

Substituting $\alpha = 2/p$ from (i),

$$6 \times (2/p)^2 = 8/p$$

$$24/p^2 = 8/p$$

$$3/p = 1$$

$$p = 3$$

Therefore, the value of p is 3.

Q.14: Solve for x : $[1/(x+1)] + [3/(5x+1)] = 5/(x+4)$; $x \neq -1, -\frac{1}{5}, -4$

Solution:

Given,

$$[1/(x+1)] + [3/(5x+1)] = 5/(x+4); x \neq -1, -\frac{1}{5}, -4$$

Let us take the LCM of denominators and cross multiply the terms.

$$[1(5x+1) + 3(x+1)] / [(x+1)(5x+1)] = 5/(x+4)$$

$$[5x+1 + 3x+3] / [5x^2 + x + 5x+1] = 5/(x+4)$$

$$(8x+4)(x+4) = 5(5x^2 + 6x + 1)$$

$$8x^2 + 32x + 4x + 16 = 25x^2 + 30x + 5$$

$$25x^2 + 30x + 5 - 8x^2 - 36x - 16 = 0$$

$$17x^2 - 6x - 11 = 0$$

$$17x^2 - 17x + 11x - 11 = 0$$

$$17x(x-1) + 11(x-1) = 0$$

$$(17x+11)(x-1) = 0$$

$$17x+11 = 0, x-1 = 0$$

$$x = -11/17, x = 1$$

Q.15: If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the quadratic equation $p(x^2 + x) + k = 0$ has equal roots, find the value of k .

Solution:

Given that -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$.

$$\Rightarrow 2(-5)^2 + p(-5) - 15 = 0$$

$$\Rightarrow 50 - 5p - 15 = 0$$

$$\Rightarrow 35 - 5p = 0$$

$$\Rightarrow 5p = 35$$

$$\Rightarrow p = 7$$

Also, the quadratic equation $p(x^2 + x) + k = 0$ has equal roots.

Substituting $p = 7$ in $p(x^2 + x) + k = 0$,

$$7(x^2 + x) + k = 0$$

$$7x^2 + 7x + k = 0$$

Comparing with the standard form $ax^2 + bx + c = 0$,

$$a = 7, b = 7, c = k$$

For equal roots, discriminant is equal to 0.

$$b^2 - 4ac = 0$$

$$(7)^2 - 4(7)(k) = 0$$

$$49 - 28k = 0$$

$$28k = 49$$

$$k = 7/4$$

Therefore, the value of k is 7/4.